
Building a Builder Builder 
Doug Hennig 

 
Creating builders is a snap using enhancements to Ken Levy’s BuilderD technology described in 

this month’s article. 

 

Last month, we looked at BuilderD, a new data-driven builder technology created by Ken Levy. BuilderD 

allows you to create a builder for a class by simply adding records to a builder definition table 

(BUILDERD.DBF, located in the WIZARDS subdirectory of the VFP home directory). 

 As easy as it is to create a builder using BuilderD, wouldn’t it be even better if there was a visual front-

end to BUILDERD.DBF, along the same lines as the forms we provide to our users? What I’m talking 

about is something that builds builders; yes folks, a builder builder. In fact, we’ll use BuilderD itself to 

build the builder builder (does that make it a builder builder builder?). 

 As an aside, about a decade ago, I worked for a company that had a pretty cool communications setup. 

We had a communications server (fast modems were pretty expensive back then) on our LAN that had the 

remote control software pcAnywhere installed on it. We had a program called LANAssist (essentially a 

LAN version of what pcAnywhere does) that allowed me to control that server from my workstation, so I 

could fire up pcAnywhere on it, and have it dial into a client’s communication server. I would then use 

LANAssist on that server to take over any user’s workstation on the client’s LAN. What got really hard to 

follow was: when I type DIR, am I getting a directory of my machine, our communication server, the 

client’s communication server, or the client workstation I was controlling? It took serious concentration to 

remember what machine your keyboard was actually affecting. I think you’ll find this analogous to what 

we’ll be doing here: “is this builder managing my object or is it managing the builder that manages my 

object?” Consider yourself warned <g>. 

 The source code available from the Subscriber Downloads site for this month includes 

SFBUILDERS.VCX, which contains subclasses of BuilderD classes (which are contained in 

BUILDERD.VCX in the WIZARDS subdirectory of the VFP home directory) that provide the functionality 

we need. There isn’t enough room here to go over all the code in these subclasses, so I’ll hit the high points. 

 First, a couple of definitions: “target object” refers to the object that you brought the builder up for, and 

“property control” refers to a control in the builder that maintains the value of a property of the target 

object. 

 

SFBuilderBuilderForm 
The first class we’ll look at it is SFBuilderBuilderForm. This class, subclassed from BuilderDForm (the 

builder form class for BuilderD), is the builder builder, and what you’ll specify in the BuilderX property of 

a class (you’ll enter “<directory>\SFBuilders, SFBuilderBuilderForm”). This subclass has some additional 

buttons added: 

 

 An “add property control” button that adds a new property control to the builder and displays a builder 

for that property control so you can specify what property the control is bound to, what caption to use, 

and its size and position. 

 An “edit builder caption” button that brings up a builder so you can change the caption for this builder. 

 A “save” button that updates the builder definition records in BUILDERD.DBF for the builder we’re 

working on. 

 An “export” button that writes the builder definition records to another table. This allows you to ship 

this table to someone else, and they simply have to APPEND FROM it into BUILDERD.DBF to get a 

copy of the builder you created. 

 

 The Load method of SFBuilderBuilderForm changes the cProgramPath property to point to the 

WIZARDS subdirectory of the VFP home directory. This is necessary because the normal behavior of Load 

(which is first executed using DODEFAULT) is to set this property to the directory this class’ class library 

is located in. Since we may not want to install SFBUILDERS.VCX in the WIZARDS directory but we still 

need to access files in that directory, this is a necessary step. 



 The Init of SFBuilderBuilderForm uses DODEFAULT() to do the normal behavior, then calls a custom 

method called CreateBuilderRecords. This method adds records to BUILDERD.DBF (if they don’t already 

exist) that define the builders used to maintain our builder. Init then ensures that the correct number of 

pages is displayed and that any custom properties the builder manages but don’t exist in the target object are 

added to the target object (more about this later). 

 The RightClick method of the form class calls a custom ShowMenu method. This uses the same 

mechanism I discussed in the February 1999 column on the FFC_ShortcutMenu class; RightClick calls 

ShowMenu, which instantiates a _ShortcutMenu object and calls the ShortcutMenu method to populate the 

object, then activates the menu. This provides us with context menus for both the form and for property 

controls (so we can, for example, right-click on a control and select a function to edit or remove it). 

 Both the “add property control” button’s Click method and the “Add property control” function in the 

context menu call the form’s AddPropertyControl method to add a new property control. This method 

checks how many controls are on the last page of the pageframe and adds a new page if necessary (the 

nMaxObjects property of the oBuilderDB object on the form defines how many controls we’ll put on a 

page). It then adds BuilderLabel (for the caption of the property) and BuilderTextBox objects to the page 

and binds the text box to the Tag property of the target object by setting its cProperty property to “Tag” (I 

had to pick some property, and figured that something as global as Tag would be the best choice). Note that 

the BuilderTextBox class it adds doesn’t come from BUILDERD.VCX, but is instead the BuilderTextBox 

class in SFBUILDERS.VCX (which, as you may expect, is subclassed from the BuilderD version). The 

reason for using a subclass is that I’ve added code to the RightClick method of my subclass so we can have 

a context menu for property controls (there’s a subclass of BuilderCheckBox in SFBUILDERS.VCX for the 

same reason). Why did I name these classes the same as their parent classes and not “SFsomething”? That’s 

because when an existing builder definition is loaded from BUILDERD.DBF, oBuilderDB.AddObjects 

creates BuilderTextBox and BuilderCheckBox objects as the property controls. With SFBUILDERS.VCX 

earlier in the class search chain that BUILDERD.VCX (done with SET CLASSLIB TO SFBUILDERS, 

BUILDERD), I ensure that my subclasses are used instead of the BuilderD classes. Finally, 

AddPropertyControl calls the custom EditObject method, passing it a reference to the new control, to 

display a builder for the new property control. EditObject simply instantiates BuilderDForm (yes, we’re 

using the regular BuilderD form for our property control builder), passing it a reference to the control, and 

tiles it below and to the right of the current builder form. 

 Both the “edit builder caption” button’s Click method and the “Edit builder caption” function in the 

context menu call the form’s EditBuilderCaption method. This method simply calls EditObject, passing a 

reference to the builder form, so it displays a builder for the form, which simply provides a way to edit the 

caption of the form. 

 The Save method is called from both the “save” button’s Click method and the “Save” function in the 

context menu. This method spins through all the property controls in the form and creates or updates a 

record for that control in BUILDERD.DBF. The Export method (called from both the “export” button’s 

Click method and the “Export” function in the context menu) also calls Save, but passes it the name of a 

table to export to which it obtained from you using GETFILE(). 

 Several of the methods in SFBuilderBuilderForm aren’t currently called from anywhere, but are there 

for future use. BuilderD doesn’t currently have great support for which page a property control is placed, so 

methods I created to add new pages, remove pages, and change the caption of pages aren’t currently used 

(you’ll see commented out code in ShortcutMenu, which populates the context menu, that would provide 

functions calling these methods). 

 Right-clicking on a property control displays a context menu with functions to edit the control (it 

simply calls EditObject, passing it a reference to the control), remove the control (which calls 

RemovePropertyControl to remove the control and any associated label object), or reset the value of the 

property the control manages to its default value (by calling the DefaultReset method; the code for this 

method is in BuilderBaseForm). 

 Other methods in SFBuilderBuilderForm are just support methods. For example, FindCaption locates 

the label object that provides the caption for a property control by looking for the object with a TabIndex 

value of one less than the control’s TabIndex value (pretty low-tech, I admit, but I didn’t want to change 

any code in any BuilderD classes, so this was the only way I could think of). FindClass and FindProperty 

find a specific CLASS or PROPERTY record in BUILDERD.DBF. 



 If you recall from last month’s article, the AddObjects method of the oBuilderDB object on the form is 

the data-driven engine of BuilderD; it reads builder definition records from the BUILDERD table and adds 

controls to the builder form. This method was overridden in SFBuilderBuilderForm to provide additional 

functionality: it adds a record for the class the builder is for to the BUILDERD table if one doesn’t already 

exist and it adds SFBUILDERS.VCX before BUILDERD.VCX in the SET CLASSLIB command. The first 

change is needed because, otherwise, BuilderD would give you an error that there are no builders registered 

for this class; we want to auto-register a builder for the class the first time a builder is invoked for it. The 

second change ensures that our BuilderTextBox and BuilderCheckBox classes are used rather than 

BuilderD’s versions, so we get a context menu when we right-click on a property control. 

 

Other Builder Classes 
As I mentioned earlier, the BuilderCheckBox and BuilderTextBox classes in SFBUILDERS.VCX are 

subclasses of the same named BuilderD classes. In addition to providing right-click behavior, these two 

classes have nTop and nLeft properties, with assign methods for each that set the custom lMoved property 

to .T. when these properties are changed. This allows us to detect when a property control was moved (the 

Left and Top controls in the property control builder are bound to nLeft and nTop rather than Left and Top 

directly). Only if a property control is moved do we store its Left and Top values to the BUILDERD table. 

 Another class in SFBUILDERS.VCX is SFPropertyCaption. This control is used to manage the caption 

for a property control. Why have a special class for that? Why not just use a normal BuilderTextBox object 

(which this is subclassed from)? The reason is that if the property control is a BuilderCheckBox, it has a 

Caption property, so the control manages that property. However, if the property control is a 

BuilderTextBox, it doesn’t have a Caption property but instead has an associated label object, so the control 

must manage the Caption property of that object. Since BuilderD classes are intended to manage the 

properties of a single object, SFPropertyCaption had to override a few methods to allow it to handle this 

situation. 

 The SFBuilderPropertyComboBox class is a subclass of BuilderComboBox. It presents a list of all of 

the writable properties of the target object (obtained using AMEMBERS() to get a list of all properties and 

then checking PEMSTATUS() of each one to eliminate those that are read-only). Although its main goal is 

to change the cProperty property (which determines which property is being managed) of the property 

control it’s managing (are you getting a headache thinking about these multiple levels of management?), it 

has a couple of interesting behaviors. First, if the property control is a BuilderTextBox but you’ve just 

changed the property it manages to a logical one (such as Enabled), it removes the BuilderTextBox and its 

associated label object, and puts a BuilderCheckBox in its place. It does the opposite if you change from a 

logical property to one of another type. Second, if you enter the name of a property that doesn’t exist, you’ll 

be prompted to create the property. If you agree, the builder uses AddProperty to add the new property to 

the target object. I don’t really recommend doing this in an object dropped on a form, because this amounts 

to instance programming; if you really need a new property, you should consider using a subclass instead. 

However, this is a quick way to create a new property in a class and have the builder manage it in one step. 

 SFBuilderAddButton is a button class (subclassed from BuilderCommandButton) that’s added to the 

builder form for a property control using the SFBuilderButtonLoader class (this scheme of having a loader 

class to add a button object to the builder form was discussed in last month’s article). The Click method of 

SFBuilderAddButton simply calls the AddPropertyControl method of the builder form the property control 

is on (there’s that multiple levels thing again) to create a new property control, then switches the current 

builder form to manage the new property control rather than the one you brought it up to manage in the first 

place. This means you can click on the Add Property Control button to add a new property control to the 

builder, and in the builder that comes up to manage it, create another one. This is a fast way to add multiple 

property controls in a hurry. 

 

Trying it Out 
Let’s see SFBuilderBuilderForm in action; it’s actually a lot easier to use than it was to describe. Create a 

subclass of the VFP TextBox class called MyTestText in TEST.VCX. Add a BuilderX property and set it to 

“SFBuilders,SFBuilderBuilderForm”, then bring up the builder for the class. Notice that even though we 

didn’t create any records in the BUILDERD table, we still got a builder form anyway (of course, there are 

no controls on the form, but we’ll change that in a moment). This is because SFBuilderBuilderForm 

automatically created a CLASS record for the class in BUILDERD when it didn’t find one. 



 Click on the Add Property Control button. You’ll notice that a textbox and label appear on the builder 

form, but then another builder form appears on top of the original builder form. This new form is the builder 

for the property control we just added. In the Property combobox, select “Tooltiptext” and change the 

Caption to “Tool Tip Text” and the Width to 250. Move this builder form aside and notice that the property 

control on the original builder form has been changed accordingly. Click on the Add Another Property 

button in the second builder form and notice that another property control was added to the original builder 

form and this builder form now maintains it. Select “Statusbartext” for the Property and change the Caption 

to “Status Bar Text” and the Width to 250. Add another property control and select “Readonly” for the 

Property and change the Caption to “Read-Only”; this time, notice the property control in the original 

builder changes to a checkbox. Close the new builder form. Figure 1 shows the builder we’ve built and 

Figure 2 shows the property control builder. 

 

Figure 1. The BuilderD builder we’ve created for MyTestText objects. 

 
 

Figure 2. The property control builder. 



 
 

 To edit one of the property controls, right-click on it and select Edit Property Control from the context 

menu; the same property control builder you saw a moment ago appears. To remove the property control, 

choose Remove Property Control from the menu. To reset the value of this property in the target object to 

the default value, choose Reset to Default. 

 Let’s change the Caption of the builder form to something more suitable. Click on the Edit Builder 

Caption button and enter “Builder for My Test Textbox Class” for the Caption in the SFBuilderBuilder 

Builder form that appears. Close this second builder. 

 If you close the builder without saving, the next time you bring up the builder for any MyTestText 

object, you’ll have a builder with no properties again. To save the builder definition in the BUILDERD 

table, click on the Save Builder button. If you want to export the builder definition to another table, click on 

the Export Builder button and enter a filename in the dialog that appears. You can then send this table to 

someone else so they can import it into their BUILDERD table and have access to the builder you created. 

 

Conclusion 
BuilderD is a great tool for creating builders for your classes, and the enhancements I described in this 

article make it even better. Thanks to Ken Levy and Steven Black for reviewing my enhancements and 

suggesting improvements. 

 
Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Saskatchewan, Canada. He is the author of 

Stonefield’s add-on tools for FoxPro developers, including Stonefield Database Toolkit and Stonefield Query. He is 

also the author of “The Visual FoxPro Data Dictionary” in Pinnacle Publishing’s “The Pros Talk Visual FoxPro” 

series. Doug has spoken at the 1997 and 1998 Microsoft FoxPro Developers Conferences (DevCon) as well as user 

groups and regional conferences all over North America. He is a Microsoft Most Valuable Professional (MVP). He 

can be reached at dhennig@stonefield.com. 

mailto:dhennig@stonefield.com

