
odifying VFP’s Wizards and Builders
Doug Hennig

The builders and wizards that come with VFP often don’t do quite what you need them to. This

month’s article shows how to remedy this.

If you’re like me, you probably haven’t used the builders and wizards that come with VFP very much

because they don’t quite work the way you want them to. Maybe they don’t have enough flexibility or

maybe you just don’t like the way they do something. Until VFP 6, there was no way to change the behavior

of the builders and wizards because Microsoft didn’t provide the source code. However, now we get the

source code for not only all the builders and wizards, but also the Class Browser, Component Gallery, and

Coverage Profiler.

 Source code for builders and wizards can be found in XSOURCE.ZIP in the TOOLS\XSOURCE

directory under the VFP home directory. When you unzip this file, it creates a VFPSOURCE directory

under which all the source code exists. Wizards are found in subdirectories of the WIZARDS directory and

builders in subdirectories of BUILDERS (although some common files located in WIZARDS are used by

some builders).

 So, now that we have source code, we can change the builders and wizards to do what we want, right?

Well, a better approach is to create new builders and wizards that use the majority of the classes and

programs of the originals but override their behavior by subclassing classes and either cloning and

modifying PRGs or creating wrapper PRGs. This month’s article will detail exactly how to do this for a

couple of the builders that come with VFP, the Grid Builder and Referential Integrity Builder.

 Once you’ve created your replacement builder or wizard, how to you tell VFP to use it rather than the

native one? Builders are registered in BUILDER.DBF and wizards in WIZARD.DBF, both of which are in

the WIZARDS subdirectory of the VFP home directory. These tables have the same structure, which is

shown in Table 1.

Field Description
NAME The descriptive name of the builder or wizard.
DESCRIPT A description for the builder or wizard.
BITMAP This field appears to be unused.
TYPE What type of object the builder or wizard is for. In the case of BUILDER.DBF, it’s

generally the base class for an object (although there are also records with
MULTISELECT, AUTOFORMAT, and RI in this field). For WIZARDS.DBF, it’s
things like FORM, REPORT, and QUERY.

PROGRAM The name of the APP file containing the builder or wizard.
CLASSLIB The class to instantiate in the APP file.
CLASSNAME The class library of the main class in the APP file.
PARMS Parameters to pass to the builder or wizard.

Table 1. Structure of BUILDER.DBF and WIZARD.DBF.

 When you invoke a builder, VFP calls the program specified in the _BUILDER system variable

(BUILDER.APP by default). BUILDER.APP looks at the environment it’s in (for example, which object

the builder is being invoked for), looks for a record that matches the environment in BUILDER.DBF (for

example, it looks for the base class of the object in the TYPE field), and invokes the registered builder.

Wizards are treated the same way, except the system variable is _WIZARD, which points to

WIZARD.APP, which looks in WIZARD.DBF.

 To tell VFP to use a different builder or wizard, insert a new record into BUILDER.DBF or

WIZARD.DBF that describes how to run your builder or wizard. If you want to have the choice of running

the old builder or wizard as well as your new one, leave the record for the original builder or wizard alone.

If you want to replace the old one, rather than deleting the original record, simply change its TYPE value to

something that will never be recognized (I use a suffix of “X”, such as “XGRID”); that way, you can simply

restore the former builder by changing its TYPE value back.

Creating a More Useful Grid Builder

The VFP Grid Builder provides a quick way to populate the columns of a grid and create the visual

appearance you want. However, I can think of several things I don’t like about the builder:

 It doesn’t size the columns it creates properly. You have to manually size them to fit the data.

 The control type combo box on the Layout page of the builder lists VFP base classes and classes

already existing in columns; there’s no way to add your own class to this list.

 The columns and headers it creates are VFP base classes. You might want to substitute your own

classes (which must be defined programmatically) to, for example, sort on a column by clicking on the

header.

 To create a replacement for the VFP Grid Builder, I first created the SFGRIDBLDR project (it’s in the

GRID subdirectory when you unzip the sample files available from the Subscriber Download Site) and

added the following files: BUILDER.VCX (in the BUILDERS\BUILDERS subdirectory of the VFP wizard

source directory), GRIDBLDR.VCX (in the BUILDERS\GRIDBLDR directory), THERM.VCX,

WIZCTRL.VCX, WIZMOVER.VCX (all in WIZARDS\WZCOMMON), DUMMY.PRG, and

WBGRID.PRG (both in BUILDERS). How did I know which files to add to this project? Simple: I just

looked at the contents of the GRIDBLDR project.

 Next, I subclassed the GridBuilder class into SFGridBuilder (in SFGRIDBLDR.VCX) and overrode

the ResetColumns method, which sizes the columns appropriately for the selected field (I only implemented

this idea, not the other two listed above). The code for that method is listed below. There are a couple of

interesting things to note here. First, I expected to write a lot of complex code to figure out how wide a

column should be, based on the width of the field, the font and font size of the grid, etc. Interestingly, it

turns out that a method to do this (SetColWidth) already existed in the builder, but rather than passing this

method the size of the field, the builder passed it a different value. The other thing is that currently the

assignment of the calculated width to loColumn.Width is commented out. For reasons I haven’t tracked

down yet, changing the width of the column at this point seems to cause a problem in that when the builder

is closed, the column width is set to 0. Instead, the width is stored in wbaCols. (In case you’re wondering,

yes, wbaCols is a public array. I didn’t create the builder, so don’t blame me for doing it this way!) So, the

effect is that when a column is added to the grid, it isn’t sized properly immediately, but is as soon as you

do anything else (add another column, go to another page in the builder, close the builder, etc.).

local lnRows, ;

 lnI, ;

 lcField, ;

 loColumn, ;

 lcHeader, ;

 loHeader

dodefault()

lnRows = alen(wbaCols, 1)

for lnI = 1 to lnRows

 lcField = wbaCols[lnI, 2]

 if not empty(lcField)

 loColumn = evaluate('wbaControl[1].' + ;

 wbaCols[lnI, 7])

 wbaCols[lnI, 1] = This.SetColWidth(fsize(lcField), ;

 loColumn)

* loColumn.Width = wbaCols[lnI, 1]

 endif not empty(lcField)

next lnI

 Finally, I created GRIDMAIN.PRG (using GRIDMAIN.PRG from the BUILDERS\GRIDBLDR

directory for ideas) in the directory for my builder and made it the main program in the project. This

program adds SFGRIDBLDR.VCX to the open class libraries using SET CLASSLIB so it can find our

SFGridBuilder class. GRIDMAIN also auto-registers itself in the VFP BUILDER table if the APP is run

directly. Here’s the code for this PRG:

lparameters tu1, ;

 tu2, ;

 tu3, ;

 tu4, ;

 tu5, ;

 tu6, ;

 tu7, ;

 tu8, ;

 tu9, ;

 tu10, ;

 tu11, ;

 tu12

local lnSelect, ;

 lcClassLib, ;

 lcLibrary

* Define the class library and VFP builder/wizard.

#define ccCLASSLIB 'SFGridBldr'

#define ccBUILDER (home() + 'WIZARDS\GRIDBLDR.APP')

#define ccMAIN 'GRIDMAIN'

* Auto-register the builder if it's called directly.

if program(0) == ccMAIN

 lnSelect = select()

 select 0

 use home() + 'wizards\builder' again

 locate for NAME = 'Stonefield Grid Builder'

 if not found()

 locate for NAME = 'Grid Builder'

 scatter memvar memo

 replace TYPE with 'XGRID'

 insert into BUILDER from memvar

 replace NAME with 'Stonefield Grid Builder', ;

 PROGRAM with sys(16), ;

 CLASSLIB with 'sfgridbldr.vcx', ;

 CLASSNAME with 'sfgridbuilder'

 endif not found()

 wait window 'SFGridBldr now registered as the ' + ;

 'Grid Builder'

 use

 select (lnSelect)

 return

endif program(0) == ccMAIN

* Get the current CLASSLIB setting, and add files we'll

* need at the start.

lcClassLib = ccCLASSLIB

lcLibrary = set('CLASSLIB')

lcLibrary = iif(empty(lcLibrary), '', ',' + lcLibrary)

set classlib to &lcLibrary &lcClassLib

* Run the "real" builder program.

do ccBUILDER with tu1, tu2, tu3, tu4, tu5, tu6, tu7, ;

 tu8, tu9, tu10, tu11, tu12

* Close the files we opened.

release classlib &lcClassLib

 To see this builder in action, build and run SFGRIDBLDR.APP to register it as the builder for grids. If

you look at BUILDER.DBF after running this APP, you’ll find that it’s “deregistered” the original grid

builder by changing the TYPE column from “GRID” to “XGRID” and added a new record for itself with

“GRID” as the TYPE. Next, create a form, drop a grid on it, and invoke the builder. The new builder won’t

look any different than the old one, but when you add fields to the grid, you’ll see that they’re properly

sized.

Creating a Better Referential Integrity Builder

I have a few problems with the Referential Integrity (RI) Builder that comes with VFP:

 When you click on the OK button to save the RI rule changes, it asks you not once but twice to confirm

that you want to go ahead and do this. Not to be snippy, but I believe the purpose of the Cancel button

is to allow me to back out; I clicked on the OK button because it was OK, so I don’t need a “are you

really, really sure you want to do this” confirmation dialog.

 You can’t run the RI Builder unless you’ve packed the database first.

 I really don’t need it to back up my current stored procedures to a file called RISP.OLD, which I

always delete anyway (or forget to delete and then end up backing it up by mistake).

 The code it generates has at least one bug that prevents it from functioning correctly. For details on the

bug, see my article, “Handling Specific Errors”, in the February 1998 issue of FoxTalk or the white

paper “Error Handling in VFP”, available from the Technical Papers page of my Web site

(www.stonefield.com).

 The code it generates is bulky and poorly commented. Trying to understand what this code does is a

laborious process, and it’s possible in a complex database to have RI code that exceeds the 64K limit of

compiled programs in VFP. If you purchased “Effective Techniques for Application Development with

Visual FoxPro 6.0” by Jim Booth and Steve Sawyer (available from Hentzenwerke Publishing,

www.hentzenwerke.com), you have a copy of a faster, leaner, and better routine for maintaining RI.

Steve’s NEWRI routine is data-driven, so it determines at runtime rather than generation time which

rules need to be enforced. The result is clear, tight code rather than the unwieldy bulk produced by the

VFP RI Builder.

 The only rules it supports are ignore, cascade, and restrict. What about other options you might want to

use, such as nullify (set the foreign key in the child to .NULL.) or assign a new value (set the foreign

key to, for example, a default value)?

 Fixing these items is relatively easy because we have the source code for the RI Builder. I created

SFRIBUILDR.APP, a replacement for the VFP RIBUILDR.APP. I didn’t implement additional rules (the

last item in the list above) but I did handle all the rest. I first created the SFRIBUILDR project (it’s in the

RI subdirectory when you unzip the sample files available from the Subscriber Download Site) and added

the VFP RIBUILDR.VCX (located in the BUILDERS\RIBUILDR subdirectory of the VFP wizard source

directory).

 Next, I subclassed the VFP RIBuildr class into SFRIBuildr in SFRIBUILDR.VCX. I overrode the Load

method to not give an error if there are any deleted records in the database (you can see where I commented

out the existing code). I overrode the Click method of the OK button to not display confirmation dialogs,

not copy the current stored procedures to RISP.OLD, and to fix the bug in the generated code. Also, if it

detects NEWRI.PRG on your system (in the same directory as the SFRIBUILR.APP), it will place that code

into the stored procedures of the database rather than generating any code. This change required a new

method, RIMakeNewTr, to create triggers with a different name (__RI_Handler) than the ones used by the

RI Builder (__RI_<action>_<table>, such as __RI_Delete_Customer). Because there’s quite a bit of code

in these methods, it isn’t shown here; however, if you look at it in the source code provided, you’ll see that I

really only commented out a few lines and added a few other lines.

 Finally, I copied RIMAIN.PRG from the BUILDERS\RIBUILDR directory to the directory for my

builder, added it to the project, and made it the main program. I modified this PRG to point to the library

where my subclass of the VFP RI builder class can be found (SFRIBUILDR.VCX) and to auto-register the

builder in the VFP BUILDER table if the APP is run directly. Here’s the code for the portions of this PRG

that I changed:

#DEFINE C_VCX "ribuildr.vcx"

*** DH: added another VCX definition

#DEFINE C_VCX2 "sfribuildr.vcx"

*** DH: changed main program name to RIMAIN.

*#DEFINE C_MAIN "CMDMAIN"

#DEFINE C_MAIN "RIMAIN"

*** DH: corrected a bug in the parameter list

*PARAMETERS p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, ;

 p11, p12, p12, p13, p14, p15

http://www.stonefield.com/
http://www.hentzenwerke.com/

PARAMETERS p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, ;

 p11, p12, p13, p14, p15, p16

PRIVATE m.wbReturnValue, m.cParmstring

LOCAL wbi

IF PROGRAM(0) == C_MAIN

 *- called directly, so fail

*** DH: made it auto-register ourselves if we're

*** called directly.

* =MESSAGEBOX(C_BADCALL1_LOC)

 lnSelect = select()

 select 0

 use home() + 'wizards\builder' again

 locate for NAME = 'Stonefield Referential ' + ;

 'Integrity Builder'

 if not found()

 locate for NAME = 'Referential Integrity Builder'

 scatter memvar memo

 replace TYPE with 'XRI'

 insert into BUILDER from memvar

 replace NAME with 'Stonefield Referential ' + ;

 'Integrity Builder', ;

 PROGRAM with sys(16), ;

 CLASSLIB with 'sfribuildr.vcx', ;

 CLASSNAME with 'sfribuildr'

 endif not found()

 wait window 'SFRIBuildr now registered as the ' + ;

 'RI Builder'

 use

 select (lnSelect)

*** DH: end of new code

 RETURN

ENDIF

*** DH: included our VCX in the list

*SET CLASSLIB TO C_VCX ADDITIVE

SET CLASSLIB TO C_VCX, C_VCX2 ADDITIVE

 Building and executing SFRIBUILDR.APP results in this file being registered as the RI Builder instead

of the usual RIBUILDR.APP. To see this in action, do the following:

 Move to the RI directory of the sample files for this article.

 If you have Steve’s NEWRI.PRG, copy it into this directory.

 Run COPYDEMO.PRG. This program will copy the VFP TESTDATA database to a DATA

subdirectory so we don’t touch the original database.

 Run DELETETEST.PRG. This will demonstrate a flaw in the code generated by the VFP RI Builder.

The first browse shows several orders for the ALFKI customer, then tries to delete that customer.

Because there’s a cascade delete rule from CUSTOMER to ORDERS but a restrict rule from ORDERS

to ORDITEMS, the customer shouldn’t be deleted. However, notice that the error dialog appears six

times (not just once as you’d expect) and then another browse shows that the customer has been deleted

(CUST_ID is .NULL.).

 Run COPYDEMO.PRG again since we’ve messed up the data.

 Open the DATA\TESTDATA database exclusively.

 Build and run SFRIBUILDR.APP to register it as the RI Builder.

 Open the Database Designer, choose the Edit Referential Integrity function, and then simply click OK

in the RI Builder dialog. Notice no confirmation dialogs appeared. Choose the Edit Stored Procedures

and notice that the code is different (if you have NEWRI.PRG, this code is placed in the stored

procedures; otherwise, the RIDelete and RIUpdate methods have a bug fix implemented). If you have

Steve’s NEWRI.PRG, modify the CUSTOMER table and note the name of the trigger for each method.

Also, you won’t find an RISP.OLD file.

 Run DELETETEST.PRG again. This time, you only get the error message once and the ALFKI

customer isn’t deleted.

Conclusion
Creating your own versions of the builders and wizards that come with VFP is really pretty easy; the hard

part is the detective work necessary to see where you need to make the changes. I hope you find the two

replacement builders discussed in this article useful, and that you’re inspired to create your own

replacements so these tools can do exactly what you need them to.

Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Saskatchewan, Canada. He is the author of

Stonefield’s add-on tools for FoxPro developers, including Stonefield Database Toolkit and Stonefield Query. He is

also the author of “The Visual FoxPro Data Dictionary” in Pinnacle Publishing’s “The Pros Talk Visual FoxPro”

series. Doug has spoken at the 1997, 1998, and 1999 Microsoft FoxPro Developers Conferences (DevCon) as well as

user groups and regional conferences all over North America. He is a Microsoft Most Valuable Professional (MVP).

He can be reached at dhennig@stonefield.com.

mailto:dhennig@stonefield.com

