
Listening to a Report
Doug Hennig

Microsoft has opened the architecture of the reporting engine in VFP 9 by having it communicate

with the new ReportListener base class. Subclassing ReportListener allows VFP developers to

create their own customized output. This month, Doug Hennig looks at ReportListener and shows

an example of how it solves a real-world problem.

As I’m sure you’re aware by now, the area that received the biggest improvements in VFP 9 is the reporting

system. Both the Report Designer and the reporting engine, responsible for running reports, received

dramatic and exciting enhancements and new features.

Before VFP 9, the reporting engine was monolithic: it handled everything–data handling, object

positioning, rendering, previewing, and printing. The new reporting engine in VFP 9 splits responsibility for

reporting between the reporting engine, which now just deals with data handling and object positioning, and

a new VFP base class, ReportListener, which handles rendering and output. VFP 9 includes both the old

reporting engine and the new one, so you can run reports under either engine as you see fit. Microsoft refers

to the new reporting engine as “object-assisted” reporting.

Using object-assisted reporting
There are three ways you can tell VFP to use the new reporting engine:

 Instantiate a ReportListener (either a base class or a subclass) and specify it in the new OBJECT

clause of a REPORT or LABEL command. This is the most flexible approach because you can

specify exactly which listener class to use, but does require you to edit the existing REPORT and

LABEL commands in your application.

loListener = createobject('MyReportListener')

report form MyReport object MyReportListener

 Specify a listener type using the OBJECT TYPE clause. There are several built-in types: 0 means

print, 1 means preview, 4 means XML output, and 5 means HTML output. You can also define

and use custom types.

report form MyReport object type 1 && preview

 Issue the new SET REPORTBEHAVIOR 90 command before running a report; usually, this will

be placed near the start of your application so all reports use the new engine. Specifying TO

PRINTER uses the built-in type 0 listener and PREVIEW uses the type 1 listener. This is

obviously more convenient that the other approaches, but doesn’t give you the level of control you

get when instantiating your own listener. SET REPORTBEHAVIOR 80 to revert to the old

reporting engine.

When you run a report using either of the last two methods, the application specified in the new

_REPORTOUTPUT system variable (by default, ReportOutput.APP in the VFP home directory) is called

to figure out which listener class to instantiate for the specified type. ReportOutput.APP is primarily an

object factory; it simply instantiates the appropriate listener. However, because it’s just a VFP application,

you can substitute your own application for it by setting _REPORTOUTPUT accordingly. Be sure to

distribute ReportOutput.APP (or your replacement for it) to your users so your applications use object-

assisted reporting.

Inside ReportListener
Because ReportListener is a VFP base class, you can subclass it to implement whatever reporting behavior

you wish. Before you can create your own listener class, you need to understand what properties, methods,

and events (PEMs) are available. For space reasons, I’ll only discuss the more important PEMs; see the

VFP help file for details on the complete set.

One of the most important properties is ListenerType. This property tells the report listener how to do

output. This property defaults to -1, which produces no output. Set it to 0 to output to a printer or 1 to

output to a preview window. Specifying 2 or 3 produces interesting results; the report is run and pages are

rendered in memory, but nothing is actually output. You can use these values when you want control over

the type of output to create. Specifying 2 renders the first page and calls the OutputPage method, then

renders the next page and calls the OutputPage method, and so on. Using 3 causes all pages to be rendered

to memory; OutputPage is not automatically called.

Before a report is actually run, the reporting engine opens a copy of the report as a read-only cursor

named FRX in a private datasession. The ID for this datasession is stored in the FRXDataSession property

of ReportListener. If you need access to the data being reported on, the CurrentDataSession property tells

you which datasession to use.

The CommandClauses property contains a reference to an object containing properties with

information about how the report is being run. For example, its Preview property is .T. if the report is being

previewed and its OutputTo property is 1 if the report is being printed.

The reporting engine fires events of the report listener as the report is run. There are also some methods

available you can call as necessary. Some of the more important events and methods are shown in Table 1.

Table 1. Some of the events and methods of ReportListener.
Event Description
BeforeReport Fired before the report is run
AfterReport Fired after the report is run
EvaluateContents Fired before a field is rendered
AdjustObjectSize Fired before a picture or shape is rendered
Render Fired as each object is rendered
OutputPage Call this to output the specified page to the specified device
CancelReport Call this to cancel the report

EvaluateContents, AdjustObjectSize, and Render are especially useful because they allow you to

change something about the object before it’s rendered. Amongst other parameters (we’ll look at them

later), these events receive the record number for the current object in the FRX cursor. You can find this

record in the cursor to determine if the object should be rendered differently than normal.

_ReportListener
The FFC subdirectory of the VFP home directory contains a new class library in VFP 9:

_ReportListener.VCX. This library contains several ReportListener subclasses. You may wish to consider

using one of these, _ReportListener, as the starting point for your own ReportListener subclasses because it

adds some very useful functionality to the base class.

One of the most useful enhancements is support for chaining different listeners together through a

successor mechanism. Setting the Successor property of one listener to a reference to another one allows

both of them to interact with the report process. This means you can write small listeners that do just one

thing and hook them together as needed. The IsSuccessor property tells you whether this listener is the

“lead” one (the one that the reporting engine communicates with because it’s specified in the OBJECT

clause of a REPORT or LABEL command).

_ReportListener also provides several utility methods. SetFRXDataSession switches to the FRX

cursor’s datasession. SetCurrentDataSession switches to the datasession the report’s data is in.

ResetDataSession restores the datasession ID to the one the listener is in.

Now that you have the background on report listeners, it’s time for some practical examples.

Dynamic formatting
One of the first things I thought of using a listener for is to dynamically format a field. I’m sure you’ve run

into this before: your client wants a field to be printed in red under some conditions and blank under others.

You could do this in earlier versions of VFP by creating two copies of the same field, one in red and one in

black, with mutually exclusive Print When conditions (such as AMOUNT >= 100 and AMOUNT < 100),

and overlap them on the report. While this works, it’s tough to maintain, especially if you have a lot of such

fields on the report.

With a report listener, you can change the formatting for a field when the report is run rather than in the

Report Designer. The key to this is the EvaluateContents event, which fires just before each field is

rendered. This event is passed the record number of the current object in the FRX cursor and a reference to

an object containing properties with information about the field (see Table 2).

Table 2. Properties of the oObjProperties object passed to EvaluateContents.
Property Type Description
FillAlpha N The alpha, or transparency, of the fill color. The values range from 0 for transparent to 255 for

opaque.
FillBlue N The blue portion of an RGB() value for the fill color.
FillGreen N The green portion of an RGB() value for the fill color.
FillRed N The red portion of an RGB() value for the fill color.
FontName C The font name.
FontSize N The font size.
FontStyle N A value representing the font style. Additive values of 1 (bold), 2 (italics), 4 (underlined), and

128 (strikethrough).
PenAlpha N The alpha of the pen color.
PenBlue N The blue portion of an RGB() value for the pen color.
PenGreen N The green portion of an RGB() value for the pen color.
PenRed N The red portion of an RGB() value for the pen color.
Reload L Set this to .T. to notify the report engine that you changed one or more of the other properties.
Text C The text to be output for the field object.
Value varies The actual value of the field to output.

DynamicFormatting.PRG, included with this month’s Subscriber Downloads, defines three classes.

DynamicListener defines what a dynamic listener must do, and two subclasses, DynamicForeColorListener

and DynamicStyleListener, change the foreground color and style, respectively, of a field that has a

directive in its USER memo. (You can access the USER memo for a field from the Other page of the Field

Properties dialog.) The directive is one of the following:

*:LISTENER FORECOLOR = ColorExpression

*:LISTENER STYLE = StyleExpression

ColorExpression is an expression that evaluates to an RGB value, such as IIF(AMOUNT > 50,

RGB(255, 0, 0), RGB (0, 0, 0)), which means use red if the amount is more than 50 and black if not.

StyleExpression is an expression that evaluates to a valid style value (see the FontStyle property in Table

2), such as IIF(AMOUNT > 50, 1, 0), which means use bold if the amount is more than 50 and normal if

not.

The first task the listener must do is identify which fields have directives. Rather than doing that every

time a field is evaluated, DynamicListener does it in the BeforeReport method. It selects the FRX cursor’s

datasession by calling SetFRXDataSession, then goes through the cursor, looking for records with the

appropriate directive (specified in the cDirective property) in the USER memo, and putting the expression

following the directive into that record’s element in an array.

The next task is to apply the directive as necessary. EvaluateContents checks if the current field’s array

element has an expression, and if so, evaluates it. It then calls the ApplyDirective method, which is abstract

in DynamicListener but implemented in its two subclasses. For example, DynamicForeColorListener sets

the appropriate color properties of the toObjProperties object and sets its Reload property to .T. so the

reporting engine knows the field’s format was changed. Finally, since the EvaluateContents method of the

_ReportListener class this class is based on doesn’t handle successors, the code calls the EvaluateContents

method of its successor if there is one.

There’s one other housekeeping chore: ensuring ListenerType is set properly. The default value, -1,

produces no output, and specifying PREVIEW or TO PRINTER in the REPORT or LABEL command

doesn’t change that. So, the LoadReport method sets ListenerType to the appropriate value if necessary.

Here’s the code for these classes:

define class DynamicListener as _ReportListener of ;

 home() + 'ffc_ReportListener.vcx'

 dimension aRecords[1]

 && an array of information for each record in the

 && FRX

 cDirective = ''

 && the directive we're expecting to find

* If ListenerType hasn't already been set, set it

* based on whether the report is being printed or

* previewed.

 function LoadReport

 with This

 do case

 case .ListenerType <> -1

 case .CommandClauses.Preview

 .ListenerType = 1

 case .CommandClauses.OutputTo = 1

 .ListenerType = 0

 endcase

 endwith

 dodefault()

 endfunc

* Before we run the report, go through the FRX and

* store information about any field with our expected

* directive in its USER memo into the aRecords array.

 function BeforeReport

 dodefault()

 with This

 .SetFRXDataSession()

 dimension .aRecords[reccount()]

 scan for .cDirective $ USER

 .aRecords[recno()] = strextract(USER, ;

 .cDirective + ' =', chr(13), 1, 3)

 endscan for .cDirective $ USER

 .ResetDataSession()

 endwith

 endfunc

* If the field about to be rendered has a directive,

* apply it.

 function EvaluateContents(tnFRXRecno, toObjProperties)

 local lcExpression, ;

 luValue

 with This

 lcExpression = .aRecords[tnFRXRecno]

 if not empty(lcExpression)

 luValue = evaluate(lcExpression)

 .ApplyDirective(tnFRXRecno, ;

 toObjProperties, luValue)

 endif not empty(lcExpression)

* If we have a successor, let it get in on the fun

* too.

 if vartype(.Successor) = 'O'

 .Successor.EvaluateContents(tnFRXRecno, ;

 toObjProperties)

 endif vartype(.Successor) = 'O'

 endwith

 endfunc

* Abstract method to apply our directive.

 function ApplyDirective(tnFRXRecno, ;

 toObjProperties, tuValue)

 endfunc

enddefine

define class DynamicForeColorListener ;

 as DynamicListener

 cDirective = '*:LISTENER FORECOLOR'

* Apply the directive.

 function ApplyDirective(tnFRXRecno, ;

 toObjProperties, tuValue)

 local lnPenRed, ;

 lnPenGreen, ;

 lnPenBlue

 if vartype(tuValue) = 'N'

 lnPenRed = bitand(tuValue, 0x0000FF)

 lnPenGreen = bitrshift(bitand(tuValue, ;

 0x00FF00), 8)

 lnPenBlue = bitrshift(bitand(tuValue, ;

 0xFF0000), 16)

 with toObjProperties

 if .PenRed <> lnPenRed or ;

 .PenGreen <> lnPenGreen or ;

 .PenBlue <> lnPenBlue

 .PenRed = lnPenRed

 .PenGreen = lnPenGreen

 .PenBlue = lnPenBlue

 .Reload = .T.

 endif .PenRed <> lnPenRed ...

 endwith

 endif vartype(tuValue) = 'N'

 endfunc

enddefine

define class DynamicStyleListener as DynamicListener

 cDirective = '*:LISTENER STYLE'

* Apply the directive.

 function ApplyDirective(tnFRXRecno, ;

 toObjProperties, tuValue)

 if vartype(tuValue) = 'N'

 toObjProperties.FontStyle = tuValue

 toObjProperties.Reload = .T.

 endif vartype(lnStyle) = 'N'

 endfunc

enddefine

TestDynamicFormatting.PRG illustrates how to chain these listeners together so both are used for a

report.

use _samples + 'Northwind\Orders'

loListener = newobject('DynamicForeColorListener', ;

 'DynamicFormatting.prg')

loListener.Successor = ;

 newobject('DynamicStyleListener', ;

 'DynamicFormatting.prg')

report form TestDynamicFormatting.FRX preview ;

 object loListener

Figure 1 show the result of running this program. Notice that in some records, the Shipped Date

appears in red and in other cases, it’s black. That’s because it has the following directive in its USER

memo:

*:LISTENER FORECOLOR = iif(SHIPPEDDATE > ORDERDATE +

10, rgb(255, 0, 0), rgb(0, 0, 0))

The Ship Via field sometimes appears in bold and sometimes normal because it has the following

directive in its USER memo:

*:LISTENER STYLE = iif(SHIPVIA = 3, 1, 0)

(Note that although this field is numeric, it displays as “Fedex,” “UPS,” or “Mail” because of the

expression in the field.)

Figure 1. Report listeners can dynamically format the text in fields.

What else can you do?
Just about anything you want. In future articles, I’ll show you other listeners that output to image files,

rotate labels, output HTML with a table of contents, and lots of other types of output.

VFP guru Ed Leafe has created a Web site (http://reportlistener.com) that serves as a central repository

for report listener classes. There are several sample listeners there now and more will be uploaded as VFP

developers start figuring out what type of cool things they can do with report listeners.

Summary
Microsoft has blown the lid off extensibility in VFP 9 in many ways, including in the reporting engine.

Because it’s a base class you can subclass, ReportListener lets you create your own customized output.

Please let me know of any cool listeners you’ve created or ideas you have for listeners.

Doug Hennig is a partner with Stonefield Systems Group Inc. He is the author of the award-winning Stonefield

Database Toolkit (SDT) and Stonefield Query, and the MemberData Editor, Anchor Editor, New Property/Method

Dialog, and CursorAdapter and DataEnvironment builders that come with VFP. He is co-author of the “What’s New

in Visual FoxPro” series and “The Hacker’s Guide to Visual FoxPro 7.0,” all from Hentzenwerke Publishing. Doug

has spoken at every Microsoft FoxPro Developers Conference (DevCon) since 1997 and at user groups and developer

conferences all over North America. He is a long-time Microsoft Most Valuable Professional (MVP), having first been

honored with this award in 1996. Web: www.stonefield.com and www.stonefieldquery.com Email:

dhennig@stonefield.com

http://reportlistener.com/

