
uilding Your Own Builders with

BuilderB
Doug Hennig and Yuanitta Morhart

Builders make it easy to set properties for objects at design time, which is especially handy for

containers which you normally have to drill down into. Ken Levy’s BuilderB tool makes creating your

own builders almost a trivial job.

I like to use a 3-D box to group controls with a common purpose, and provide a label that sits on the box

indicating what the controls are for. For example, in Figure 1, the box labeled “Options” groups the check

boxes, making it obvious that they belong together and provide options the user can choose from.

Figure 1. SFLabelledBox control.

 Because a labeled box is something I envision using often enough, it was worth it to create a labeled

box control. This was very easy to do:

 I created a new class in SFCCTRLS.VCX (our class library of custom controls) called SFLabelledBox

based on SFContainer (our base class for all containers, which is defined in SFCTRLS.VCX).

 I added an SFShape object to the container, named it shpBox, and sized and positioned it as follows:

Top = 6 (to leave room for the label), Left = 0, Width = width of the container, and Height = height of

the container - 6.

 I added an SFLabel object to the container, named it lblLabel, and set the following properties:

BackStyle = 1 (Opaque; although this is the default for the VFP Label base class, SFLabel changes this

to Transparent since that’s what we normally want, so we need to change it back for this particular

instance), Caption = “ Box Label ” (with a space at the start and end of the text so there’s some room

around the label when it sits on the box), Top = 0, and Left = 10.

 Now, whenever I need a labeled box, I simply drop one from SFCCTRLS onto a form or class. Simple,

right? Well, there’s one slight annoyance: containership. The same concept that makes it easy to move this

control around makes it more difficult to change properties of the individual components. For example,

when you resize the SFLabelledBox object, you’re really just resizing the container. You then have to right-

click on the container, choose Edit in the shortcut menu, click on the shpBox object, and resize it, ensuring

that you use the proper dimensions to match the container. Similarly, you have to drill down into the

container to get at the caption of the label. It almost seems easier to drop a shape and label on a form and

manipulate them individually than to go through these machinations with SFLabelledBox. That is, until you

remember that VFP allow you to create custom builders that can make changing properties of objects at

design time a snap.

Creating a Builder
Creating a builder isn’t difficult, but can be a fair amount of work, and may not seem like it’s worth the

effort for classes you may not use very often. Fortunately, Ken Levy has created and released into the public

domain a builder builder (I’ll try to resist making too many of the obvious jokes that come out of this

situation <g>) called BuilderB. Although BuilderB is included in this month’s Subscriber Download files,

you can get the latest copy of BuilderB from Ken’s Web site: www.classx.com.

 BuilderB consists of several classes that allow you to quickly create a standardized builder for just

about any object. One look at all those classes may make you think using BuilderB is a daunting task, but in

fact you only use a handful of classes, and you generally only set one or two properties for each of those

classes and probably won’t enter even a single line of code.

 Yuanitta Morhart, a software developer with Stonefield Systems Group, was particularly enthused with

BuilderB after she attended Ken’s session on it at Great Lakes Great Database Workshop in March 1997.

I’m going to turn things over to her to describe how she used BuilderB to create a builder for the

SFLabelledBox class.

How I Built a Builder (Yuanitta)
I’m going to describe the step-by-step process that I followed to create a builder for the SFLabelledBox

class. BuilderB includes a read me file called BUILDERB.TXT in which Ken describes how to use

BuilderB. In general, I followed his instructions, but made a few changes along the way.

 My goal was to create a builder which would allow me to do the following: drop an SFLabelledBox

object on a form, right-click on the object, choose Builder from the shortcut menu, fill in the width and

height, specify a caption for the label, and choose OK. The builder should adjust the width and height for

both the container and the shape, accounting for the fact that they have slightly different heights. Figure 2

shows the finished product so you get an idea of how the builder will look.

Figure 2. BuilderB builder for the SFLabelledBox control.

 I started by entering “SFBldrs,SFLabelledBoxBuilder” into the Builder property of the SFLabelledBox

class. Builder is a custom property we added to every class defined in SFCTRLS.VCX. This property,

which is blank by default, tells the VFP BUILDER.APP what class to use as the specific builder for this

class (if this property doesn’t exist or is blank, VFP uses the default builder for the BaseClass of the object).

This is a much simpler mechanism than VFP 3, which required you to register the builder in

BUILDER.DBF and didn’t allow you to create specialized builders for particular classes (although another

Ken Levy utility, BuilderX, provided a way around this problem). The text before the comma is the name of

the VCX containing the class, and the text following the comma is the name of the class in that VCX. Thus,

we’re going to have an SFBLDRS.VCX class library containing a class called SFLabelledBoxBuilder that

will be the builder for SFLabelledBox objects.

 Next, I created a new class in SFBLDRS.VCX (which didn’t exist, so VFP automatically created it)

called SFLabelledBoxBuilder, based on the BuilderFormClass contained in BUILDERB.VCX.

BuilderFormClass has all the properties and methods needed in a builder, so you don’t have to worry about

the underlying mechanism of how a builder gets connected to the selected object or controls its properties.

Although I could’ve put SFLabelledBoxBuilder in SFCCTRLS.VCX, it made more sense to put all the

builders I’ll create into their own class library.

 The next step is to add some controls to SFLabelledBoxBuilder. I wanted a text box for the caption of

the label and two spinners, one for the height of the SFLabelledBox object and one for the width.

BUILDERB.VCX has most of the controls you’ll need to use on a builder form, except for a spinner, so I

had to create one. I didn’t want to add a new class to BUILDERB.VCX (downloading a new version of

BUILDERB.VCX from Ken’s Web site would overwrite any changes I made), so I created a new class in

SFBLDRS.VCX called BuilderSpinner, based on the VFP Spinner base class. I copied all of the methods

and properties from the BuilderTextBox class to BuilderSpinner (Doug: times like this make me wish VFP

supported multiple inheritance), then changed the Init method to assign 0 (rather than an empty string) to

Value and the InteractiveChange method to not ensure Value is of type Character.

 After creating BuilderSpinner, I realized I had an extra complication. Each BuilderB class has a custom

cProperty property. cProperty is used to tie a control in a builder to a particular property in the object being

maintained with the builder. You set cProperty to the name of the property you want to adjust; for example,

use “Width” so changes in the control affect the Width property. However, I wanted to use one spinner to

affect a property of two different objects: the SFLabelledBox container and the shpBox shape it contains. In

order to do this, I created a subclass of BuilderSpinner called BuilderSpinner2Property and added a second

custom property called cProperty2. I put the following code into the RefreshPropertyValue method (which

is called whenever the value of the control is changed, so changes cause the property it manages to change

as well):

local lcCurrProperty

dodefault()

lcCurrProperty = This.cProperty

This.cProperty = This.cProperty2

dodefault()

This.cProperty = lcCurrProperty

 Because the normal RefreshPropertyValue method updates the property whose name is contained in

cProperty with the value of the control, we can use DODEFAULT() to get the normal behavior, then put the

contents of cProperty2 into cProperty and use DODEFAULT() again to make it update the second property.

Before exiting this method, the code restores the former cProperty setting.

 Once the BuilderSpinner and BuilderSpinner2Property classes were setup, I carried on with working on

my builder (SFLabelledBoxBuilder). I added two instances of the BuilderSpinner2Property class (one for

the width and the other for the height), one instance of BuilderTextBox (defined in BUILDERB.VCX) for

the label’s caption, and three instances of BuilderLabel (also in BUILDERB.VCX). I set the captions for

the BuilderLabels as shown in Figure 2 and set cProperty for the BuilderTextBox to “lblLabel.Caption” so

it’s tied to the Caption property of the lblLabel object in the SFLabelledBox object. For the first

BuilderSpinner2Property object, I set cProperty to “Width” and cProperty2 to “shpBox.Width”; this means

this control will adjust the widths of the SFLabelledBox container and the shpBox object within the

container.

 The BuilderSpinner2Property object controlling the height is a little more complicated: while it directly

affects the height of the container, the height of the box is 6 pixels less than that of the container, so we

have to override the RefreshPropertyValue method for this object with the following code:

local lcCurrProperty, ;

 lnCurrValue

dodefault()

lcCurrProperty = This.cProperty

lnCurrValue = This.Value

This.cProperty = This.cProperty2

This.Value = max(This.Value – 6, 1)

dodefault()

This.cProperty = lcCurrProperty

This.Value = lnCurrValue

 That’s it! While this may seem like a fair amount of work, most of it was not creating the builder itself

but creating some new classes for BuilderB with additional functionality. Most builders you’ll create with

BuilderB will be much simpler, and probably won’t require any code at all.

Using the Builder (Doug)
Using the builder Yuanitta created is easy. Drop an SFLabelledBox object on a form, right-click on the

object, and choose Builder from the shortcut menu. As you enter the caption for the label in the text box or

use the spinners to change the size of the object, notice the caption or the size changes instantly. That’s

because the custom lUpdateOnChange property of the BuilderB controls is set to .T., meaning any changes

are immediately reflected back to the property they control. If you want to turn this feature off, simply set

the property to .F.; the property will then be updated only when the control loses focus.

 Builders created with BuilderB provide additional functions:

 Changing the name of the object

 Saving the selected object as a class

 Running the Class Browser and automatically displaying the class the selected object is based on

 Displaying a menu of registered add-ins, similar to the add-ins feature of the Class Browser

 Launching another builder

 Toggling the AlwaysOnTop property of the builder form

 Displaying the contents of the BUILDERB.TXT help file

 Another interesting feature of BuilderB builders is that they are non-modal; while the builder form is

open, you can click back on the Form or Class Designer window the object is in. Any changes you make to

properties of the object are reflected back in the builder (a timer is used to handle this). You can turn this

behavior off by setting the lAutoRefresh property of any control in the builder to .F.

 Other notes about BuilderB:

 BuilderB includes a program called, strangely enough, BUILDERB.PRG. This program simply

appends the directory it’s in to the VFP path so BuilderB files can easily be found. You might want to

put your builder class library (such as SFBLDRS.VCX) into the same directory as BuilderB so pathing

isn’t an issue.

 You can use builders created with BuilderB to help you create BuilderB builders (is your head starting

to hurt yet? <g>). After you drop a BuilderB control on a builder you’re creating, you can right-click

on the control, select Builder from the shortcut menu, and use a special builder to set the properties of

the control, such as cProperty, lAutoRefresh, and lUpdateOnChange.

 BuilderB supports multiple levels of builders. You can add a custom BuilderX property to one of your

classes and enter the name and class library of the BuilderB builder for that class. This overrides any

builder name entered into the custom Builder property; choosing Builder from the shortcut menu

launches the BuilderX builder rather than the one specified by the Builder property. However, you can

still launch the builder specified in the Builder property by clicking on a button in the builder form.

This means you could have one builder for a certain class (entered into Builder) and a specialized

builder for a subclass of that class (entered into BuilderX). Launching a builder for the subclass would

give your specialized builder, but you could then access the more general builder from the builder

form.

 In addition to builders invoked from the shortcut menu, BuilderB allows you to create “drag toolbar”

builders, which allow you to drag properties (such as font settings) and drop them on objects.

BUILDERS.VCX includes several examples of these builders.

 Like other builders, BuilderB builders can do more than simply change some properties. For example,

you could use the WriteMethod method to insert code into a method of the object.

Summary

Builders can greatly increase your productivity, especially when used with containers that you would

normally have to drill down into to change properties. With Ken Levy’s BuilderB, you can literally create a

new builder in a matter of minutes without having to know anything about how builders work. In future

articles, we’ll provide builders for complex reusable tools we create to make it easier to work with these

tools.

Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Saskatchewan, Canada. He is the author of

Stonefield’s add-on tools for FoxPro developers, including Stonefield Database Toolkit for Visual FoxPro and

Stonefield Data Dictionary for FoxPro 2.x. He is also the author of “The Visual FoxPro Data Dictionary” in Pinnacle

Publishing’s “The Pros Talk Visual FoxPro” series. Doug has spoken at user groups and regional conferences all

over North America, and spoke at the 1997 Microsoft FoxPro Developers Conference. He is a Microsoft Most

Valuable Professional (MVP). 75156.2326@compuserve.com or dhennig@stonefield.com.

Yuanitta Mohart is a software developer with Stonefield Systems Group Inc. She has been developing applications in

FoxPro 2.x and VFP for over six years. ymorhart@stonefield.com.

mailto:dhennig@stonefield.com
mailto:dhennig@stonefield.com

