
50 Shades of Grey: Whipping
Your Application’s UI into

Shape

Doug Hennig
Stonefield Software Inc.

Email: dhennig@stonefield.com
Corporate Web sites: www.stonefieldquery.com

www.stonefieldsoftware.com
Personal Web site : www.DougHennig.com

Blog: DougHennig.BlogSpot.com
Twitter: DougHennig

There’s no excuse for creating a boring looking VFP application. Using some of the controls
available today, you can create a new, modern user interface for your forms that’ll add years
to the life of your applications. With a few days of effort, your apps can be as pretty as
anything out there. This document looks at several new controls that allow you to freshen
your user interface and wash out the grey.

mailto:dhennig@stonefield.com
http://www.stonefieldquery.com/
file:///D:/Development/Writing/Sessions/DeployingVFPApps/www.stonefieldsoftware.com
http://www.doughennig.com/
http://doughennig.blogspot.com/
http://www.twitter.com/DougHennig

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 2 of 32

Introduction
One of the reasons I hear that VFP developers are told to move to .NET is that .NET has
controls that provide a newer, fresher look to applications. VFP apps look old, they say. Old
fonts like Arial, old colors like the background grey, old icons for buttons, and old-style
menus and toolbars. However, there’s no reason for that. You can easily use newer, cleaner
fonts like Segoe UI (the standard system font in Windows Vista and up), you can use
modern, colorful 32-bit icons (there are hundreds or even thousands of web sites that
provide free or paid icons), and you can use some of the projects on VFPX
(http://vfpx.codeplex.com) to provide modern-style menus, toolbars, and other graphical
user interface elements in your applications.

This document focuses on controls that have a more modern interface than the versions
you’ve probably used in the past. Some of them are VFPX projects while others are classes I
or others created. Specifically, we’re going to look at gauges, toolbar buttons, a tabbed
document interface, and a library of controls that replace the VFP TextBox, EditBox,
CheckBox, OptionGroup, CommandButton, PageFrame, and window title bar with more
attractive alternatives.

Adding gauges to your applications
People like visual images. Most people would rather see a chart than columns of raw
numbers because it’s easier to see the relationships between items visually. Adding
analysis tools like charts and gauges to your applications make them much more valuable
to your users.

What is a gauge? A gauge is an image that shows how a single value compares to a
maximum or goal value. The two values can be anything: current sales compared to budget,
volume to date compared to the maximum allowable volume, and so on. For example, many
charitable organizations show the current status of their fund raising campaigns as a
thermometer. The top of the thermometer represents the value of the fund raising goal and
the height of the bar inside the thermometer represents how much money has been raised
so far.

The most common type of gauge looks like a speedometer in a car; see Figure 1 for an
example. The end of the gauge represents the maximum value and the position of the
needle represents the current value. Color bands around the outside edge of the gauge
show the ranges of certain categories. For example, in Figure 1, the red band indicates
where sales are too low, the yellow band where they’re acceptable but not great, and the
green band where sales should be to make the boss happy.

http://vfpx.codeplex.com/

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 3 of 32

Figure 1. It’s easy to draw beautiful gauges using the Gauge class.

We recently added support for gauges to my company’s flagship product, Stonefield Query
(www.stonefieldquery.com). In this document, I’ll show you how we did it.

The Gauge class

There’s just a single class used to draw gauges: Gauge in Gauge.vcx (additional components
are also required as I’ll discuss later). It’s a subclass of Custom so it has no visible
appearance at runtime. How does the gauge appear then? After you call the DrawGauge
method, the cImage property is set to the bytes for the gauge image. You can use
FILETOSTR() to write the contents of cImage to a file, such as if you want to use the gauge
in a report, or set the PictureVal property of an Image object if you want it to appear in a
form. For example, SampleGauge.scx, one of the forms included in the samples for this
document, uses this code to have the Gauge object referenced in the oGauge property draw
a gauge in an Image named imgGauge:

with This
 .oGauge.nSize = .imgGauge.Width
 .oGauge.DrawGauge()
 .imgGauge.PictureVal = .oGauge.cImage
endwith

Table 1 lists the properties of the Gauge class. As you can see, there are quite a few of
them. Most of them affect the appearance of the gauge.

Table 1. The properties of the Gauge class.

Property Description

cDialText The text for the dial

cDialTextFontName The font for the dial text

cErrorMessage The text of any error that occurs

http://www.stonefieldquery.com/

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 4 of 32

Property Description

cFormat The format for the labels in .NET syntax: {0:#,##0} by default

cImage The gauge image

cLabelFontName The font for the labels

lAdjustLabelSize .T. to adjust the label size based on the gauge size, .F. to use the size specified in
nLabelFontSize

lDialTextFontBold .T. if the dial text is bold

lDialTextFontItalic .T. if the dial text is italics

lDisplayDigitalValue .T. to display the value in a digital display

lLabelFontBold .T. if the label text is bold

lLabelFontItalic .T. if the label text is italics

lValuesAsPercentages .T. to use percentages for values, .F. to use amounts for values

nBackColor The background color or the starting color for a background gradient

nBackColor2 The end color for a background gradient; if it’s the same as nBackColor, there is
no gradient

nBackColorAlpha The alpha for the background color

nBackGradientMode The mode for a background gradient: 0 = left to right, 1 = top to bottom, 2 = from
top left, 3 = from top right

nBand1Color The color for band 1

nBand1End The ending position for band 1

nBand2Color The color for band 2

nBand2End The ending position for band 2

nBand3Color The color for band 3

nDialAlpha The alpha for the dial color

nDialColor The color to use for the dial

nDialTextColor The color for the dial text

nDialTextFontSize The font size for the dial text

nDigitsColor The color for digital digits

nGlossiness The glossiness value (0 – 100)

nGoalPosition The position where the goal value appears on the gauge; defaults to 100

nLabelColor The color to use for labels

nLabelDistance The distance between labels and major tick marks

nLabelFactor The factor to use for labels: 1, 1000, 10000, etc.

nLabelFontSize The font size for the labels

nMajorTickColor The color of major tick marks

nMajorTickCount The number of major ticks

nMaxValue The goal value for the gauge

nMinorTickColor The color of minor tick marks

nMinorTickCount The number of minor ticks

nSize The height and width of the gauge (it’s a square so they’re the same)

nValue The current value for the gauge

oBridge A reference to a wwDotNetBridge object

oGauge A reference to a .NET GaugeControl object

The best way to check out how the various properties work is by running SampleGauge.scx,
shown in Figure 2. Each control has a tooltip specifying which property it controls.
Changing any setting immediately redraws the gauge so you can instantly see the effect.

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 5 of 32

Figure 2. SampleGauge.scx allows you to experiment with the properties of the Gauge object.

Here are comments about some of the properties:

 nGlossiness controls how bright the “glossy” ellipse that appears at the top of the
gauge is. This ellipse gives the illusion of reflected light, as if the gauge was made of
glass or plastic.

 The gauge size is determined by the nSize property; since a gauge is drawn as a
square, the height and width of the image are both set to nSize.

 By default, the labels indicating the values around the gauge are sized based on the
size of the gauge: the larger the gauge, the bigger the labels. Set lAdjustLabelSize to
.F. if you want to use the font size specified in nLabelFontSize instead.

 cFormat indicates how the labels are formatted. It has to use .NET syntax for
number formats for reasons that will be obvious later. .NET syntax uses “#” as an
optional digit placeholder, “0” as a digit placeholder that displays 0 if there is no
digit, “.” for a decimal separator, and “,” to use a thousands separator (unlike VFP,
only one is needed in the format even when numbers exceed one million). The
format string is surrounded with “{0:” and “}”, so the default of “{0:#,##0}” specifies
no leading zeros, no decimal places, and thousands separators.

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 6 of 32

 nBand1End indicates where on the outer rim of the gauge the first color band
appears, such as the red band in Figure 1. Only the end value is needed, since the
band starts at 0. Similarly, nBand2End and nBand3End indicate the ending positions
of the second and third color bands, with the starting positions being the end of the
previous band.

 By default, nBand1End, nBand2End, and nBand3End are assumed to be
percentages, so a value of 35 indicates an ending position of 35% of the gauge arc. If
you want to use amounts instead, such as 25,000, set lValuesAsPercentages to .F.

 Since the gauge can’t go above 100%, the needle is pegged at the maximum value
when nValue is greater than nMaxValue. Because you may want the maximum value
to be a goal that could be exceeded (for example, a salesperson’s monthly quota may
be $10,000 but they certainly could sell more than that), you can set nGoalPosition
to a lower value than 100. For example, if you set it to 75, then the nMaxValue value
appears at 75%.

 For larger numbers (over 1,000), the labels can overlap the major tick marks, so
increase the value of nLabelDistance accordingly. Alternatively, you can set
nLabelFactor to a value to divide the labels by so smaller numbers are shown. For
example, if you set nLabelFactor to 10000, the 5,000 position on the gauge appears
as “5.”

Creating a dashboard

Dashboards are all the rage these days. A dashboard is a form displaying multiple panels of
information, such as charts, reports, and of course gauges. Another sample form that comes
with the samples for this document, Dashboard.scx (Figure 3), is a simple demo of how a
dashboard might work.

Figure 3. A dashboard consists of multiple gauges.

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 7 of 32

This form is actually quite simple. Its Init method adds eight Image controls and sizes and
positions them so they take up two rows of four images. A Timer on the form calls the
form’s DrawGauges method, which uses a single Gauge control to do the drawing.
DrawGauges sets the properties of the Gauge control to different values for each gauge
(different dial colors and different current and maximum values), draws the gauge, and sets
the PictureVal property of each Image control to the resulting image. Just for fun, the timer
fires every 2 seconds and shows a random value so you can see the needles move.

How Gauge works

The Gauge class is actually a wrapper for a .NET DLL that does all the work. I’ll discuss the
.NET class later.

To avoid COM registration and other issues, I use Rick Strahl’s wwDotNetBridge utility
(http://tinyurl.com/ce9trsm). As you can see in Listing 1, the Init method of Gauge
instantiates wwDotNetBridge into the oBridge property. Since you usually only want a
single instance of wwDotNetBridge in an application, you can pass an existing instance to
Init instead. Init also loads the Gauge.dll .NET assembly and instantiates the
Gauge.GaugeControl class into the oGauge property.

Listing 1. The Init method sets up the helper objects needed by the class.

lparameters toBridge

* If we were passed a wwDotNetBridge object, use it. Otherwise, create one.

if vartype(toBridge) = 'O'
 This.oBridge = toBridge
else
 This.oBridge = newobject('wwDotNetBridge', 'wwDotNetBridge.prg', '', 'V2')
endif vartype(toBridge) = 'O'
loBridge = This.oBridge

* Load the Gauge assembly: it must be in the current directory or path.

if not loBridge.LoadAssembly('Gauge.dll')
 This.cErrorMessage = 'Gauge.dll could not be loaded: ' + ;
 loBridge.cErrorMsg
 return
endif not loBridge.LoadAssembly('Gauge.dll')

* Instantiate a GaugeControl object.

This.oGauge = loBridge.CreateInstance('Gauge.GaugeControl')

* Set cFormat to a default we can't set in the Properties window.

This.cFormat = '{0:#,##0}'

Since the .NET DLL does all the work, all the DrawGauge method of the Gauge class has to
do is populate the properties of the .NET object with the values of its own properties, call

http://tinyurl.com/ce9trsm

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 8 of 32

the .NET object’s DrawGauge method, and put the return value, which is the bytes of the
gauge image, into cImage. The code for DrawGauge is shown in Listing 2.

Listing 2. The DrawGauge method uses the GaugeControl object to draw the gauge.

local lnEnd1, ;
 lnEnd2, ;
 lnMaxValue
with This

* Get the band positions.

 lnEnd1 = .nBand1End
 lnEnd2 = .nBand2End
 lnMaxValue = .nMaxValue/100

* If the band values were entered as amounts, convert to percentages.

 do case
 case .lValuesAsPercentages
 case .nMaxValue = 100
 && max value hasn't been set
 lnEnd1 = 35
 lnEnd2 = 70
 otherwise
 lnEnd1 = int(lnEnd1/lnMaxValue)
 lnEnd2 = int(lnEnd2/lnMaxValue)
 endcase
endwith
with This.oGauge

* Set the appearance properties.

 .AdjustLabelSize = This.lAdjustLabelSize
 .BackColor = This.GetColor(This.nBackColor, ;
 This.nBackColorAlpha)
 .BackColor2 = This.GetColor(This.nBackColor2, ;
 This.nBackColorAlpha)
 .BackGradientMode = This.nBackGradientMode
 .Band1Color = This.GetColor(This.nBand1Color)
 .Band1End = lnEnd1
 .Band2Color = This.GetColor(This.nBand2Color)
 .Band2End = lnEnd2
 .Band3Color = This.GetColor(This.nBand3Color)
 .DialColor = This.GetColor(This.nDialColor, ;
 This.nDialAlpha)
 .DialText = This.cDialText
 .DialTextColor = This.GetColor(This.nDialTextColor)
 .DialTextFontName = This.cDialTextFontName
 .DialTextFontSize = This.nDialTextFontSize
 .DialTextFontBold = This.lDialTextFontBold
 .DialTextFontItalic = This.lDialTextFontItalic
 .DigitsColor = This.GetColor(This.nDigitsColor)
 .DisplayDigitalValue = This.lDisplayDigitalValue

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 9 of 32

 .LabelFontBold = This.lLabelFontBold
 .LabelFontItalic = This.lLabelFontItalic
 .LabelFontName = This.cLabelFontName
 .LabelFontSize = This.nLabelFontSize
 .Format = This.cFormat
 .Glossiness = This.nGlossiness
 .Height = This.nSize
 .LabelColor = This.GetColor(This.nLabelColor)
 .LabelDistance = This.nLabelDistance
 .LabelFactor = This.nLabelFactor
 .MajorTickColor = This.GetColor(This.nMajorTickColor)
 .MajorTicks = This.nMajorTickCount
 .MinorTickColor = This.GetColor(This.nMinorTickColor)
 .MinorTicks = This.nMinorTickCount

* Set the value properties.

 .MaxValue = This.nMaxValue * 100/This.nGoalPosition
 .Value = This.nValue

* Draw the image and set our cImage property to the image bytes.

 This.cImage = .DrawGauge()
endwith

The only complication in DrawGauge is that VFP color values don’t match up with .NET
color values: the .NET values have the red, green, and blue components reversed, and also
support an alpha, or transparency, value. So, DrawGauge calls a helper method named
GetColor (Listing 3), which pulls out the color components and puts them into the order
needed for .NET.

Listing 3. The GetColor method converts a VFP color number to the .NET equivalent.

lparameters tnColor, ;
 tnAlpha
local lnRed, ;
 lnGreen, ;
 lnBlue, ;
 lnAlpha
lnRed = mod(tnColor, 256)
lnGreen = mod(bitrshift(tnColor, 8), 256)
lnBlue = mod(bitrshift(tnColor, 16), 256)
lnAlpha = iif(vartype(tnAlpha) = 'N', tnAlpha, 255)
return rgb(lnBlue, lnGreen, lnRed) + bitlshift(lnAlpha, 24)

The .NET component

GaugeControl.cs, included with the samples for this document, is the source code for the
.NET gauge component in Gauge.dll. I started with code created by Ambalavanar
Thirugnanam, available from http://tinyurl.com/ppl44uy, and made a number of changes
to it:

http://tinyurl.com/ppl44uy

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 10 of 32

 I modified it to be a simple .NET class that returns an image as a string rather than a
Windows Forms User Control that displays the gauge. This allows the image to be
written to a file or displayed in a VFP Image control without having to worry about
registering the .NET control as an ActiveX control and adding it to a VFP form.

 I added properties for various colors, such as the background color, rather than
using hard-coded values.

 I added support for a background gradient in addition to a solid color.

 Because it’s difficult to create a .NET Font object in VFP, even with wwDotNetBridge,
I added properties for the name, size, bold, and italics settings of fonts used for the
dial text and labels. GaugeControl uses these properties to instantiate a Font object
with the specified settings.

If you’re interested in how the .NET component works, I recommend reading the article at
http://tinyurl.com/ppl44uy as it discusses the logic and math involved in drawing the
gauge. Then examine the C# source code in GaugeControl.cs to see how it’s implemented.

If you build the Gauge solution that includes GaugeControl.cs, you’ll find that it has a post-
build event that copies the DLL to the parent folder of the solution, which is the same folder
as Gauge.vcx is located. Note that if you’ve used the VFP Gauge control and VFP is still open,
you have to close VFP before building the .NET solution because the .NET DLL is still open
in VFP.

Since GaugeControl.cs uses GDI+ to do all of the drawing, why didn’t I convert the C# code
to VFP code using the VFPX GDIPlusX project? After all, that would give us a 100% VFP
solution with no need for wwDotNetBridge or Gauge.dll. The reason I didn’t is two-fold:

 Why reinvent the wheel? It would’ve taken several hours to convert the C# code into
the equivalent VFP code and there’d be lots of debugging to make sure it works the
same.

 I’ve run into some performance issues with GDIPlusX on some machines. In fact, this
is what prompted me to look at this solution in the first place. I was using the VFPX
FoxCharts project to draw gauges but found that on some systems, it was taking a
minute or more to draw the gauge. In tracking the problem down, I found that on
those systems, some of the GDI+ function calls were taking an order of magnitude
longer to execute, and these functions were called thousands of times for each
gauge. I don’t know why some systems have this performance problem with
GDIPlusX but the .NET component has no such problems on those systems.

Deploying Gauge

Deploying Gauge is straightforward:

 Add Gauge.vcx and wwDotNetBridge.prg to your project.

 Use the Gauge class as you see fit: to create image files for reports (cImage is in PNG
format) or for the source of images in forms.

http://tinyurl.com/ppl44uy

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 11 of 32

 Include wwDotNetBridge.dll, ClrHost.dll, and Gauge.dll in your installer or copy
those files to the client’s system. No registration is required for any of these
components.

Gauge.dll requires version 2.0 of the .NET framework. Windows Vista and later come with
.NET 2.0 so this is only an issue for Windows XP and earlier. If you use Inno Setup as your
application installer, you can make your installer detect whether .NET 2.0 is missing and
automatically download and install it by adding #INCLUDE DotNet2Install.iss to your Inno
script file. DotNet2Install.iss is included in the samples for this document, as is Isxdl.dll, a
component used by DotNet2Install.iss.

Toolbar buttons
VFP developers often use a toolbar instead of adding buttons directly to a form because
controls in a toolbar don’t get focus. However, toolbars aren’t the easiest controls to work
with:

 The user can move and close a toolbar, which often leads to support calls like “how
do I get the toolbar back.” They can even undock the toolbar with an inadvertent
double-click.

 You can’t create a toolbar instance; you have to create a separate class even if only
one instance of the toolbar is used and it’s never subclassed.

 Toolbars are odd controls to work with at design time. When you drop a control on
one, VFP adds it to the left edge of the toolbar regardless of where you actually
dropped the control. Separators are weird to work with too; I always have to
reposition them a couple of times to get them to the correct place.

 You can’t visually add a toolbar to a form; doing so creates a formset.
Programmatically adding one to a form is odd too: you have to do it someplace like
Activate rather than Init or it won’t attach to the form.

 Toolbars take up some of the form height but you can’t see that at design time so
you have to pretend the toolbar is there when sizing the form and placing controls.

Carlos Alloatti specializes in developing libraries VFP developers can use to make the user
interface of their applications more attractive, modern-looking, and easier to use. His TBZ
library, available for download from http://www.ctl32.com/tbz/tbz.html, provides
controls you add to a VFP form rather than a toolbar. Because they act like normal VFP
controls at design time and don’t receive focus at runtime, you avoid the issues discussed
above while getting the benefits of a toolbar.

One other benefit you get from TBZ is that in additional to command buttons (the
_TBCommand class), checkboxes (_TBCheck and _TBToggle for a graphical version), and
radio buttons (_TBRadio), Carlos provides drop-down (_TBDropDown and
_TBDropDownVert) and split button (_TBSplitButton and _TBSplitButtonVert) controls.
These are buttons that include shortcut menus; in the case of a split button, you can either

http://www.ctl32.com/tbz/tbz.html

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 12 of 32

click the button to take some action or the down arrow beside it to display the menu. See
Figure 4 for an example.

Figure 4. The TBZ split button provides both a command button and a shortcut menu.

Using TBZ

Start by adding _TBZ.vcx to your project. When you build the project, 74 PRGs, all starting
with “_api,” are automatically added. These PRGs use a rather ingenious technique: each
declares a Windows API function with an alias the same as the PRG name and then calls
that function. The benefit of this approach is that there’s no need to declare functions
before they’re used. For example, when the Windows API CreateFont function is needed,
call _APICreateFont. The first time it’s called, the PRG is executed, which declares
CreateFont as _APICreateFont and then executes it. The second time _APICreateFont is
used, the Windows API function is called instead of the PRG because of the order in which
VFP looks for names.

In addition to the PRGs, eight PNGs, _TBZ01.png through _TBZ08.png, are automatically
added to the project. These PNGs contain images used for the various styles of the controls.

To create a toolbar in a form, drop instances of TBZ classes onto the form. For example, to
create the sample TBZToolbar.scx included with the samples for this document, I dropped
two _TBSplitButton, two _TBCommand, and a _TBToggle onto the form and positioned
them accordingly. I also dropped a _TBLine on the form to act as a separator line for the
toolbar. The interesting thing about _TBLine is that it sizes itself automatically to the width
of the form so you don’t have to worry about sizing it, setting Anchor to handle resizing, etc.

After adding the controls to the form, add code to the Click method of each. For
_TBDropDown and _TBSplitButton, add code to the DropDownClick method to define and

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 13 of 32

display a shortcut menu and take the necessary action. Listing 4 shows the code that
displays the menu shown in Figure 4. In a real application, the MESSAGEBOX statement
would be replaced with the appropriate code.

Listing 4. This code displays a shortcut menu for the first split button in the form.

local lnResult
This.tbMenuItemAdd(1, 0, 0, 0, 0, '&Order', 'invoice.png')
This.tbMenuItemAdd(2, 0, 0, 0, 0, '&Customer', 'customer.png')
This.tbMenuItemAdd(3, 0, 0, 0, 0, '&Item', 'item.png')
lnResult = This.tbMenuShow()
do case
 case lnResult = 1
 messagebox('Create new order')
 case lnResult = 2
 messagebox('Create new customer')
 case lnResult = 3
 messagebox('Create new item')
endcase

Add items to the shortcut menu by calling the tbMenuItemAdd method of the button and
display the menu by calling tbMenuShow. The parameters for tbMenuItemAdd are:

 The ID of the item. This is the value returned by tbMenuShow when the user selects
an item.

 The parent ID of the item. To create a submenu, specify the ID of the item this item
should be under. Figure 5 shows an example of a submenu.

 The type of menu item. You can use constants defined in _TBZ.h for the values. The
choices are 0 for a normal item, 1 for a separator, 2 to display a button as a
checkmark, and 3 if the item contains a submenu.

 1 if the item is checked (or displays a button if the third parameter is 2) or 0 if not.

 0 if the item is enabled or 1 if not.

 The caption of the item. Use & to specify that the next character is the hot key for the
item.

 An image file to use as a picture for the item.

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 14 of 32

Figure 5. Submenus are easy to create using tbMenuItemAdd.

You may also want to set properties of the controls. There are a lot of properties that
control the appearance of the controls, all documented on the TBZ web page, but the main
ones are listed in Table 2.

Table 2. The most common properties of the TBZ controls.

Property Description

Picture The image to use for the button.

Caption The caption for the button.

PicturePosition Determines where the picture goes; only applicable when Caption isn’t blank.

Alignment Specifies the alignment of the caption.

ToolTipText The tooltip to display for the control. TBZ uses a custom tooltip window rather than the
VFP window.

tbAlign Controls how automatic positioning works: 0 means no automatic positioning, 1 (the
default) positions controls starting at the left edge of the form, and 2 positions them
starting at the right edge.

tbGroupID Radio controls with the same value act like a group.

tbMarginH The space between the left or right edge of the form and the first control when tbAlign
is 1 or 2.

tbMarginV The space between the top or bottom of the form and the controls when tbAlign is 1 or
2.

tbStyle Specifies which of the eight PNG files provides the visual style for the control; see the
TBZ web page for screen shots of the various styles.

tbValue The value of the radio button or checkbox; use this instead of Value.

Although it’s just a sample form and doesn’t do much, TBZToolbar.scx shows one use for
split buttons: allowing the user to select one of several choices. For example, clicking New
(the leftmost button) would add a new customer but clicking the drop-down part of the
button allows the user to select what to create a new record of: Order, Customer, or Item.
Similarly, clicking Open (the second button in the toolbar) would display a dialog of orders
for the current customer but clicking the drop-down displays the most recent orders for
the customer.

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 15 of 32

TBZ issues

There are a couple of things I couldn’t get to work at first. One was that neither drop-down
nor split buttons would display a shortcut menu. The cause turned out to be a case-
sensitivity issue in the _GetMouseStatus method of _TB, the parent class for the TBZ
controls. Replace the commented-out line in that method with the one following it:

*** If m.laMouse[1].Name = 'UISHAPER' Then
 If upper(m.laMouse[1].Name) = 'UISHAPER'

The second wasn’t really a problem, just a difference in the way the controls worked from
the documentation. The TBZ web page states that the controls are automatically laid out at
runtime, similar to how a VFP Toolbar works. However, I found I had to manually position
the controls where I wanted them to appear because they weren’t automatically
positioned. The cause turned out to be simple: the TBZ controls use BINDEVENT to bind
their _ArrangeControls method, which does the positioning, to the Init method of the form,
and my sample form didn’t have code in Init, which caused the event binding to fail. Adding
a comment to Init took care of that issue.

How it works

Carlos has a good description of how TBZ works on the TBZ web page. He includes
information on how to create your own style PNG files if you want to use a different theme
as well as GDI+ drawing issues he ran into and how he solved them.

Tabbed document interface
Some users live in their Internet browsers. They’re used to a web page just being another
tab within their browser window. Carlos’ TDI library, available for download from
http://www.ctl32.com/tdi/tdi.html, allows you to create a similar user interface for your
application: each open form is just another tab within a main window. Figure 6 shows an
example, with three forms open as tabs.

http://www.ctl32.com/tdi/tdi.html

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 16 of 32

Figure 6. The TDI library makes it easy to create a tabbed document interface.

Typically, the first tab in such an interface is a menu of available forms or some type of
home page for the application, such as that shown in Figure 7. When the user opens a form,
it appears as a new tab. The tab may display an icon and includes an “X” to close the tab.
The home button at the right edge of the main window selects the first tab. As more tabs
are opened, the tab width automatically narrows as necessary to fit all of the open tabs in
the window. Tabs can be rearranged by dragging them to the desired tab position. The first
tab is special in that it doesn’t display an icon and can’t be closed or rearranged.

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 17 of 32

Figure 7. The first tab is usually a menu or home page.

Using TDI

Start by adding TDI.vcx to your project. When you build your project, 29 PRGs, all starting
with “_api” and using the same technique the PRGs used by TBZ do, are automatically
added. Only 10 of the PRGS are the same as those in TBZ so if you use both libraries in an
application, you’ll have 93 of these PRGs in your project.

The next step is to create the main window for the application. This form hosts the forms in
your application rather than _SCREEN so it’ll be a top-level form. To hide _SCREEN, create a
CONFIG.FPW file containing at least SCREEN=OFF (you’ll likely want other lines as well,
such as RESOURCE=OFF) and add it to the Text Files section of your project. Create a form
and set ShowWindow to 2-As Top-Level form. Drop a TDIMain object on the form and add
code to its TDIInit method to run another form, the one that’ll display the content for the
first tab. For example, Main.scx (shown in Figure 8), the form that acts as the main window
in the samples for this article, just has one line of code in TDIInit:

do form Menu

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 18 of 32

Figure 8. The form for the main window just consists of an instance of TDIMain.

There are only a few properties of TDIMain you may wish to change:

 TabFirstWidth: the width of the first tab. If you leave this at the default of 0, the tab
is automatically sized.

 TabMaxWidth: the maximum width of a tab. The default is 200.

 TDICenterDialogs: set this to .T. (the default) to center system dialog windows, such
as MESSAGEBOX(), on the form or .F. to center them on the Windows desktop.

 TDIGoToFirstTabOnClose: set this to .T. to automatically select the first tab when a
tab is closed or .F. (the default) to select the next logical tab.

Now create a form that contains the contents of the first tab. Set ShowWindow to 1-In Top-
Level Form and Caption to the text displayed on the first tab. Add whatever controls to the
form you wish. In the case of Menu.scx (shown in Figure 9), which is the form used for the
first tab in the samples for this article, I added some labels and some instances of a custom
class consisting of an image and label to act as big buttons (the “Customers,” “Orders,” and
other buttons shown in Figure 9). The Click method of each “button” runs another form
using DO FORM SomeFormName or displays a message box.

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 19 of 32

Figure 9. The form for the main tab usually contains buttons to launch other forms.

Finally, create the other forms used by the application, being sure to set ShowWindow to 1-
In Top-Level Form, Caption to the text displayed on the tab, and Icon to the desired icon for
the tab. One thing you’ll find is that you might want to move the controls a little to the right
and down from the top from where you might normally put them. For example, I usually
start controls 10 pixels from the left and 10 from the top but that puts them too close to the
edges when used with TDI. I suggest starting them at least 15 pixels from the left and top
edges.

To display the main window for the application, use DO FORM MainWindowName or
instantiate and call the Show method of the main window class you created.

How it works

Carlos has a brief description of how TDI does its magic on the TDI web page. Basically, one
of his classes monitors VFP window creation and takes over how the form is displayed
inside the top-level form.

Themed title bar
Forms that just have the usual grey appearance can be a little boring. Even worse, in
Windows 10, by default all windows have a white title bar. Figure 10 shows a typical VFP
form with Desktop set to .T.

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 20 of 32

Figure 10. Desktop windows in Windows 10 look even more boring with a white title bar.

If you want to add a little color and pizzazz to your forms, use Markus Winhard’s
ThemedTitleBar VFPX project (http://tinyurl.com/o6lvong). Figure 11 shows an example
of the same form shown in Figure 10 but with a more attractive title bar thanks to Markus.

Figure 11. ThemedTitleBar allows you to add an attractive element to your forms.

ThemedTitleBar has the following appearance and behavior:

 Dragging the title bar moves the form.

http://tinyurl.com/o6lvong

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 21 of 32

 Double-clicking anywhere in the title bar toggles between maximizing the form and
restoring it to its original size.

 The minimize, maximize, and close buttons work as expected. They respect the
MinButton, MaxButton, and Closable properties of the form.

 The large label in the control is the title of the form. The smaller label below it is an
optional description. The control can also optionally display an image.

ThemedTitleBar consists of two classes: ThemedTitleBarBase and
ThemedTitleBarSettingsBase, both in ThemedTitleBarBase.vcx. Neither of these classes can
be instantiated—you get an error if you try—so you’ll actually use subclasses instead.
Markus provides a set—ThemedTitleBar and ThemedTitleBarSettings, both in
ThemedTitleBar.vcx—but you can create your own subclasses as we’ll see later.

To use ThemedTitleBar, add both ThemedTitleBarBase.vcx and the class library containing
the classes you’ll use to your project, then drop an instance of the ThemedTitleBarBase
subclass on a form. If you do nothing else, your form looks like Figure 11 but without the
image or description. To display an image and/or description, add ThemedTitleBarImage
and ThemedTitleBarDescription properties to the form and set them to the file name for
the image and the text for the description, respectively. You can, of course, add these
properties to your form base class. You can also use different names for these properties if
you wish; in that case, change the values of the cDescriptionProperty and cImageProperty
properties of the ThemedTitleBarBase subclass.

Other properties you may wish to set are:

 lAutoMoveFormControls: ThemedTitleBarBase automatically moves itself to the top
of the form at runtime. Since you may have dropped the control somewhere other
its final location, the other controls on the form have to move down to accommodate
it. lAutoMoveFormControls determines whether that happens or it. Its default
setting is .T., meaning the controls are moved. However, if you place the
ThemedTitleBarBase subclass at the top of the form and adjust the other controls
yourself (which I prefer, so the form looks the same at design time and runtime), set
this property to .F.

 cSettingsClass and cSettingsClassLib: since you have to use a subclass of
ThemedTitleBarSettings, set these properties to the name of the subclass and the
VCX that contains it.

 cTitleProperty: by default, the title label comes from the form’s Caption property. If
you want to use another property instead, set cTitleProperty to the name of that
property.

 lFixedHeight: if you use a resizer control on your form and don’t want it to change
the ThemedTitleBar’s height, set lFixedHeight to .T.

ThemedTitleBarSettings has four properties you may want to set:

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 22 of 32

 cCaptionFontFamily: this is a comma-delimited list of fonts to use for the caption.
The first one that exists is used. The default is “Segoe UI, Tahoma, Arial.”

 cDescriptionFontFamily: like cCaptionFontFamily, but determines the font for the
description.

 nTitleBarBackColor: the background color of the title bar.

 nTitleBarForeColor: the foreground color of the caption and description labels.

The Init method of ThemedTitleBarBase gets an instance of the
ThemedTitleBarSettingsBase subclass to use from the following locations:

 If a property of _SCREEN named ThemedTitleBarSettings exists and contains an
object, it’s used.

 If the form uses the default data session, it instantiates the class specified in
cSettingsClass and cSettingsClassLib and adds it to _SCREEN as a member named
ThemedTitleBarSettings. Thus, after the first form is run, any other forms using
ThemedTitleBar use the existing _SCREEN.ThemedTitleBarSettings instance.

 If the form has a private data session, it instantiates the class specified in
cSettingsClass and cSettingsClassLib but doesn’t put it anywhere; it’s only used in
Init.

The first and second points above bring up something interesting: since all forms using
ThemedTitleBar use the same instance of ThemedTitleBarSettings, they all display the
same colors; hence the name “themed.” However, one thing I found was that changing
nTitleBarBackColor of the ThemedTitleBarSettings object didn’t change the title bar color
of any forms that were already open. So, I created a subclass of ThemedTitleBarBase
named SFThemedTitleBar (in SFThemedTitleBar.vcx) with the following code in Init:

dodefault()
if type('_screen.ThemedTitleBarSettings') = 'O'
 bindevent(_screen.ThemedTitleBarSettings, 'nTitleBarBackColor', ;
 This, 'RefreshColors', 1)
 bindevent(_screen.ThemedTitleBarSettings, 'nTitleBarForeColor', ;
 This, 'RefreshColors', 1)
endif type('_screen.ThemedTitleBarSettings') = 'O'

This code binds the RefreshColors method of this subclass to the nTitleBarBackColor and
nTitleBarForeColor properties of the ThemedTitleBarSettings object, so changes to those
properties cause this code to execute:

with _screen.ThemedTitleBarSettings
 This.BackColor = .nTitleBarBackColor
 This.lblCaption.ForeColor = .nTitleBarForeColor
 This.edtDescription.ForeColor = .nTitleBarForeColor
endwith

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 23 of 32

I also created a subclass of ThemedTitleBarSettingsBase named SFThemedTitleBarSettings
and set the cSettingsClass and cSettingsClassLib properties of SFThemedTitleBar to use
that class.

Now, all I have to do is change the values of the nTitleBarBackColor and nTitleBarForeColor
properties of _SCREEN.ThemedTitleBarSettings, such as with a “themes settings” dialog,
and any open forms change automatically.

There’s only one glitch with ThemedTitleBar: if the form’s Desktop property is .T. (which I
use for all my forms), the form has a small white band at the top in Windows 10 as you can
see in Figure 12. This is true of any form that has TitleBar set to 0-Off, not just forms using
ThemedTitleBar, but it looks even odder when ThemedTitleBar is used. I’m sure there’s
some Windows API function you can call to turn this off but I haven’t come across it yet.

Figure 12. In Windows 10, forms with Desktop .T. have a white band at the top.

SSClasses
SSClasses is a VFPX project by Jun Tangunan that provides several controls with more
colorful and interesting interfaces. You can download SSClasses from
https://vfpx.codeplex.com/releases/view/99045.

SSTextBox

SSTextBox is a container class (discussed on Jun’s blog at http://tinyurl.com/pdscl3b) that
at runtime looks like a textbox, but with some additional features, as you can see in Figure
13:

https://vfpx.codeplex.com/releases/view/99045
http://tinyurl.com/pdscl3b

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 24 of 32

 The textbox has rounded corners. This is controlled through the Curvature
property; set it to 0 for square corners.

 Setting focus to the control changes the border color, controlled with the
BorderColor property.

 Double-clicking the textbox clears its value.

 The _Marker property determines whether a checkmark appears at the right edge of
the control. Set it to 1 (the default) for a green checkbox, 2 for a blue one, and 0 for
no checkbox.

 Set _NoBackspace to .T. if you want to prevent the backspace key from setting focus
to the previous control (the default behavior of the VFP Textbox is one my
customers have complained about).

Figure 13. SSClasses provides several attractive, colorful controls.

I subclassed SSTextBox to create SFSSTextBox in SFSSClasses.vcx. It’s a little bit easier to
use; instead of setting the ControlSource, FontName, and FontSize properties of the textbox
inside the container, you simply set those properties of the class itself. Also, it ensures the
checkbox is vertically centered within the control and adds an lClearOnDblClick property
that determines whether double clicking clears the value (the default is .F.).

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 25 of 32

SSSwitch

SSSwitch is a replacement for the VFP Checkbox that has a much more colorful appearance
as you can see in Figure 13. It’s discussed on Jun’s blog at http://tinyurl.com/nmbhgwo. It
has 18 different themes (see Table 3) that affect both the off and on state of the checkbox.

Table 3. The theme of SSSwitch affects its appearance.

Theme Off On

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

To set up SSSwitch, call the _Settings method from Init:

http://tinyurl.com/nmbhgwo

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 26 of 32

This._settings(Caption, Value, Theme number (1-18), .T. for no bold, ForeColor, ;
 .T. for no border)

The value for the second parameter can be numeric or logical, depending on what type of
value you want the control to contain. For example, pass .T. to use a logical value with it
initially turned on. If you don’t pass .T. for the fourth parameter, the caption of the
checkbox is bolded when the value is .T. If you don’t pass .T. for the last parameter, the
control has a dashed line border when it has focus. Here’s an example:

This._settings('Active', .T., 3, .T., , .T.)

It has a ControlSource property so you can bind it to any numeric or logical field or
property. To get the current value of the control, use the Value property.

I subclassed SSSwitch to create SFSSSwitch in SFSSClasses.vcx. It’s a little bit easier to use;
instead of calling _Settings, set the _Caption, Value, _nTheme, _nNoBold, ForeColor, and
_Border properties as desired. They each have an Assign method that calls a new _Redraw
method that calls _Settings.

I also fixed a bug in SSSwitch: if you set ControlSource to an object property instead of a
field in a cursor, you get an error when you change the value of the control. Here’s the
change I made in SSSwitch.shpFocus.Click:

*** DH 2015-09-11: handle control source being an object property
* If !Empty(This.Parent.ControlSource)
* Replace &lcField With .Value In &lcTable
* Endif
 do case
 case empty(This.Parent.ControlSource)
 case used(lcTable)
 replace &lcField with .Value in &lcTable
 otherwise
 store .Value to (This.Parent.ControlSource)
 endcase
*** DH 2015-09-11: end of new code

SSOptSwitch

SSOptSwitch is a replacement for the VFP OptionGroup that uses the same 18 different
themes as SSSwitch; see Figure 13.

To set up SSOptSwitch, call the _Settings method from Init:

This._settings(Value, Theme number (1-18), Captions, ForeColor, .T. for no border)

The value for the third parameter determines the number of buttons and what their
captions are; specify the captions separated with “|” characters. If you don’t pass .T. for the
last parameter, the button with focus has a dashed line border. Here’s an example:

This._settings(1, 1, 'Enterprise|Medium|Small')

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 27 of 32

Like SSSwitch, it has a ControlSource property so you can bind it to any numeric field or
property. To get the current value of the control, use the Value property.

SSOptSwitch is a container class containing 12 buttons (only those that have the caption set
are visible). If you want the buttons laid out horizontally instead of vertically, edit the
instance and arrange the buttons as necessary.

SSButton, SSButton3_, and SSButton4

There are three classes in SSClasses that are replacements for the VFP CommandButton:
SSButton, SSButton3_, and SSButton4 (no, I don’t know why there’s an underscore after
SSButton3). All are more colorful than CommandButton, have built-in hover effects, and
display their caption in bold when clicked. The differences between them are:

 SSButton supports themes which give it unusual color effects while SSButton3_ and
SSButton4 just support highlight colors, although they also appear with a “glow”
area.

 SSButton3_ appears as a grey button (although you can change the button color)
while SSButton4 uses a variant of its hover color as its normal background color.

 SSButton has square corners while SSButton3_ and SSButton4 have rounded
corners and a Curvature property that controls that appearance.

All three button types are initialized by calling _Settings in Init. For SSButton, it’s called like
this:

This._settings(Caption, Theme number (1-10), Button color (1-6), Icon filename, ;
 Icon position (1-9), Tool tip, .T. to center caption, .T. to wordwrap caption, ;
 Font name, Font size, Font color, .T. for bold, .T. for italics, ;
 Special effect setting, Folder name for images)

The color and appearance of the button are affected by the second and third parameters.
Table 4 shows the ten themes that are available; the images were taken when the button
color is 1 (red). For the button color parameter, use 1 for red, 2 for green, 3 for yellow, 4 for
orange, 5 for grey, or 6 for blue. For the icon position parameter, use 1 for top left, 2 for top
center, 3 for top right, 4 for middle left, 5 for middle center, 6 for middle right, 7 for bottom
left, 8 for bottom center, or 9 for bottom right.

Table 4. The theme of SSButton affects its appearance.

Theme Appearance

1

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 28 of 32

2

3

4

5

6

7

8

9

10

Regardless of the theme and button color, the hover color for the button is always a shade
of blue, although the theme affects the exact shade used.

For SSButton3_, call _Settings like this:

This._settings(Caption, Highlight color (1-7), Icon filename, Icon position, ;
 Tool tip, .T. to center caption, Special effect setting, Curvature, ;
 .T. to wordwrap caption, BackColor, Font name, Font size, Font color, ;
 .T. for bold, .T. for italics)

For the highlight color parameter, use 1 for red, 2 for green, 3 for yellow, 4 for orange, 5 for
brown, 6 for blue, or 7 for “other” (a yellowish color). For the BackColor parameter, use 1
for RGB(227, 230, 234) (grey), 2 for RGB(237, 231, 231) (light grey), or 3 for RGB(225, 250,
180) (green).

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 29 of 32

SSButton4 is similar except it has no BackColor parameter:

This._settings(Caption, Color (1-7), Icon filename, Icon position, Tool tip, ;
 .T. to center caption, Special effect setting, Curvature, ;
 .T. to wordwrap caption, Font name, Font size, Font color, ;
 .T. for bold, .T. for italics)

SSTab

SSTab provides colorful tabs for pageframes (Figure 14). This class has the following
features:

 Because it’s a separate control, you can place the tabs anywhere. In Figure 14, they
are indented from the left edge of the pageframe.

 You can specify one of four colors for the tabs.

 The tabs can display an icon, a tooltip, and a folded corner for the active tab.

Figure 14. SSTab creates attractive tabs for pageframes.

To use SSTab, add a pageframe to a form and set Tabs to .F. so it doesn’t display its own
tabs. Add as many SSTab objects to the form as there are pages in the pageframe and in the
Init method of each put code like this:

This._settings(Caption, Tool tip, Tab number, Name of pageframe, Color (1-4), ;
 BackStyle, Icon filename, Icon stretch, .T. to show a fold, ;
 .T. if this is the initially selected page, Inside color setting, ;
 .T. to turn off PageFrame.Themes, Inside color to use)

If you pass 1 for the inside color setting, the pageframe is filled with a darker version of the
color used for the tab. Use 2 for a lighter color or 0 for no color. Note that once you’ve
specified a color, you can’t change it back to uncolored; that could be fixed in

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 30 of 32

SSTab._Settings if desired. You can also specify a different color to use for the pageframe
with the last parameter.

Jun notes that if a form contains more than one pageframe, you should put the pageframes
and the associated SSTab objects into containers so the SSTab objects don’t get confused
about the effects.

SSEditBox

Figure 15 shows what SSEditBox provides: a replacement for the VFP EditBox that
displays only a single line in the form but can drop down to a larger editing control. The
advantage is that it doesn’t take up much vertical space unless needed.

Figure 15. SSEditBox provides a dropdown edit window.

To use SSEditBox, drop it on a form and set ControlSource or handle the Value property as
necessary. If you want the dropdown area (which is actually a form with no frame) to have
a shadow, set _lShadow to .T. (the default). If you want it to be semi-transparent so you can
see the controls it covers in behind, set _lTransparent to .T.

As you type in the control, the dropdown area automatically appears as soon as you’ve
typed more characters than specified in _nMaxChars (the default is 15); set this property as
desired. The dropdown also appears if you click the arrow at the right edge of the control
or press the Down Arrow key. To close the dropdown, click the arrow again (see below),
press Esc or Tab, or click outside the dropdown.

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 31 of 32

I fixed a couple of issues in SSEditBox. First, if you drop one on a page in a pageframe, you’ll
get an error in Init because Page doesn’t have a Resize event. Here’s the change I made in
Init along with a comment about this:

*** DH 2015-09-18: this causes an error if the control is in a page of a
*** pageframe. Also, it's better to set Anchor than bind to Resize, so let's
*** just bind to our own Resize.
*BINDEVENT(this.Parent,"resize",this,"_resize")
BINDEVENT(this,"resize",this,"_resize")

I made a couple of changes in _dropedit. First, because it used CREATEOBJECT() to
instantiate another class, that meant you’d get an error if you didn’t SET CLASSLIB first. I
changed CREATEOBJECT() to NEWOBJECT() so the class library is specified and SET
CLASSLIB isn’t needed. The second change is knowing when the edit form is open and
doing nothing if so. Otherwise, clicking the arrow when the form is open, thinking that it’ll
close the form, causes the form to close and immediately reopen. Here’s the entire method
with the changes as indicated (I also added an lOpen property):

LPARAMETERS lRemoveLast
LOCAL lcValue
*** DH 2015-09-18: if the form is open, do nothing
if This.lOpen
 This.lOpen = .F.
 return
endif This.lOpen
*** DH 2015-09-18: end of new code

lcValue = ALLTRIM(this.txtedit.Value)
IF m.lRemoveLast
 this.txtedit.value = LEFT(m.lcValue,LEN(m.lcValue)-1)
ENDIF

*** DH 2015-09-01: changed to use NEWOBJECT so don't need SET CLASSLIB, and set
*** open flag
*This._editpop = Createobject("editdrop", Thisform,This.txtedit, m.lcValue)
This._editpop = newobject("editdrop", This.ClassLibrary, '', Thisform,This.txtedit, ;
 m.lcValue)
This.lOpen = .T.

If !Isnull(This._editpop)
 This._editpop._ShowForm(Objtoclient(This, 2), Objtoclient(This,1) + ;
 This.Height - 1, this._lshadow, this._ltransparent)
Endif

Summary
There’s no excuse for creating a boring looking VFP application. Using the controls
discussed in this document, and others available on VFPX or other sites, you can create a
new, modern user interface for your forms that’ll add years to the life of your applications.
With a few days of effort, your apps can be as pretty as any .NET application. Get started
today!

50 Shades of Grey: Whipping Your Application’s UI into Shape

Copyright 2015, Doug Hennig Page 32 of 32

Biography
Doug Hennig is a partner with Stonefield Software Inc. He is the author of the award-
winning Stonefield Database Toolkit (SDT); the award-winning Stonefield Query; the
MemberData Editor, Anchor Editor, and CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My namespace and updated Upsizing Wizard in
Sedna.

Doug is co-author of VFPX: Open Source Treasure for the VFP Developer, Making Sense of
Sedna and SP2, the What’s New in Visual FoxPro series, Visual FoxPro Best Practices For The
Next Ten Years, and The Hacker’s Guide to Visual FoxPro 7.0. He was the technical editor of
The Hacker’s Guide to Visual FoxPro 6.0 and The Fundamentals. All of these books are from
Hentzenwerke Publishing (http://www.hentzenwerke.com). He wrote over 100 articles in
10 years for FoxTalk and has written numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers Conference (DevCon) starting in 1997
and at user groups and developer conferences all over the world. He is one of the
organizers of the annual Southwest Fox and Southwest Xbase++ conferences
(http://www.swfox.net). He is one of the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was a Microsoft Most Valuable
Professional (MVP) from 1996 through 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award (http://tinyurl.com/ygnk73h).

http://www.hentzenwerke.com/
http://www.foxrockx.com/
http://www.swfox.net/
http://vfpx.codeplex.com/
http://tinyurl.com/ygnk73h
http://www.hentzenwerke.com/catalog/hackfox7.htm
http://www.hentzenwerke.com/catalog/newin7.htm
http://www.hentzenwerke.com/catalog/wnvfp8.htm
http://www.hentzenwerke.com/catalog/wnvfp9.htm
http://www.hentzenwerke.com/catalog/vfpbp10.htm
http://www.hentzenwerke.com/catalog/makingsos.htm
http://www.stonefieldquery.com/sdt.html
http://www.stonefieldquery.com
http://vfpx.codeplex.com/
http://www.swfox.net
http://www.foxrockx.com/seite.htm

	Introduction
	Adding gauges to your applications
	The Gauge class
	Creating a dashboard
	How Gauge works
	The .NET component
	Deploying Gauge

	Toolbar buttons
	Using TBZ
	TBZ issues
	How it works

	Tabbed document interface
	Using TDI
	How it works

	Themed title bar
	SSClasses
	SSTextBox
	SSSwitch
	SSOptSwitch
	SSButton, SSButton3_, and SSButton4
	SSTab
	SSEditBox

	Summary
	Biography

