
Creating a Plug-in Architecture
for Your Applications

Doug Hennig
Stonefield Software Inc.

Email: dhennig@stonefield.com
Corporate Web sites: www.stonefieldquery.com

www.stonefieldsoftware.com
Personal Web site : www.DougHennig.com

Blog: DougHennig.BlogSpot.com
Twitter: DougHennig

Adding support for plug-ins to your applications has a lot of benefits: users can extend or alter
the functionality of the application, you can deploy new features without installing a new
build, and you can create customer-specific versions of an application without endless sets of
CASE statements. This document looks at how adding plug-in support can help your
applications and looks at several techniques that can be used independently or together.

mailto:dhennig@stonefield.com
http://www.stonefieldquery.com/
file:///D:/Development/Writing/Sessions/DeployingVFPApps/www.stonefieldsoftware.com
http://www.doughennig.com/
http://doughennig.blogspot.com/
http://www.twitter.com/DougHennig

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 2 of 29

Introduction
Wikipedia states that “a plug-in (or add-in / addin, plugin, extension or add-on / addon) is
a software component that adds a specific feature to an existing software application.
When an application supports plug-ins, it enables customization.”
(http://tinyurl.com/7bndc7n) For example, plug-ins have proven to be extremely popular
in the web browser world, adding new features such as managing passwords, anti-virus
scanning, and opening files within the browser such as PDFs.

Why would you want to support plug-ins in your applications? There are several reasons:

 You don’t have to think of and implement every feature every user would ever want.
Instead, you can focus on the core feature set and let others come up with
interesting new capabilities. If a plug-in proves to be popular, its functionality can be
added to the core code (or not).

 You don’t have to be an expert at everything the application might do. You can let
others who are develop best-of-breed plug-ins.

 You can deploy new features without creating and installing a new build. For
example, in my company’s flagship product, Stonefield Query, exporting to a file is
disabled in the demo version. However, one potential customer wanted to see how
exporting would work for them. We created a plug-in that turned on the export
feature and emailed it to him so he could evaluate that feature. Without that ability,
we would have had to create a custom version of the application and email him a
multi-megabyte file.

 In the introduction to her Southwest Fox 2008 session titled “Customizing Your
Vertical Market Application,” Cathy Pountney stated “Writing a vertical market
application can be very rewarding. You write one application, sell it numerous
times, and sit back while the money rolls in. Well, that’s the theory anyway. The
reality is that often times, new clients want to buy your software, as long as you can
change this one little thing. Managing custom code for various clients within your
application can easily turn into a nightmare as your client base expands.” Plug-ins
allow you to avoid creating separate builds for each customer and instead
implement custom functionality individually. For example, we have several versions
of Stonefield Query customized for different products, such as the Sage 300
accounting system and the ACT contact management system. Originally (15 years
ago), these versions had customized code bases. However, that was difficult to
manage: changes in one product had to be duplicated in another. So we created the
Stonefield Query SDK, which was designed from the ground up to be customizable
through plug-ins rather than changes to core code.

An example where plug-ins are useful is the case of calculating taxes. Some jurisdictions
have unusual (OK, weird <g>) tax laws. For example, in Canada, the Goods and Services Tax
(GST) applies to doughnuts if you buy less than six but not if you buy more than six. The
rationale is that six or more qualifies it as groceries (which aren’t taxed) while less than six
qualifies as fast food (which is taxed). To make it even more complicated, some provinces

https://en.wikipedia.org/wiki/Software_component
https://en.wikipedia.org/wiki/Software_application
http://tinyurl.com/7bndc7n

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 3 of 29

have a separate Provincial Sales Tax (PST), some have a sales tax combined with the GST
(Harmonized Sales Tax or HST), and one has no additional tax at all. If you sell an
application that deals with taxes, imagine what the DO CASE statement would look like to
handle each of the possibilities in every jurisdiction your application is used! And, of
course, you have to keep up with tax law changes in every jurisdiction and release an
upgrade to your application when they do.

With plug-ins, you put the responsibility of applying and keeping up with tax laws in the
hands of the users (or possibly resellers) of your application. Here’s a simplistic example
taken from TestTaxes.prg. If a plug-in to calculate taxes exists, the current order is
converted to XML and passed to the plug-in, which calculates and returns the tax. If no
plug-in exists, a default calculation using a tax rate of 5% is applied to every line item in the
order.

if loScript.DoesScriptExist('CalculateTax')
 cursortoxml('', 'lcXML', 1, 0, 0, '1')
 lnTax = loScript.Execute('CalculateTax', lcXML)
else
 calculate sum(0.05 * Unit_Price * Quantity) to lnTax
endif loScript.DoesScriptExist('CalculateTax')

Here’s the code for one such CalculateTax plug-in. This is for a fictional jurisdiction that
applies different tax rates to different types of products, and in the case of one product
type, the rate depends on the amount sold (similar to the rules for Canadian doughnuts).

lparameters tcXML
local lnTax, ;
 lnLineTotal, ;
 lnRate
xmltocursor(tcXML, 'Order')
lnTax = 0
scan
 lnLineTotal = Quantity * Unit_Price
 do case
 case Category_Name = 'Dairy Products'
 lnRate = 0.03
 case Category_Name = 'Seafood' and Quantity > 500
 lnRate = 0.05
 case Category_Name = 'Grains/Cereals'
 lnRate = 0
 otherwise
 lnRate = 0.045
 endcase
 lnTax = lnTax + lnLineTotal * lnRate
endscan
return round(lnTax, 2)

A different jurisdiction might have much simpler, or even more complex, code. The point is
that each customer can have tax calculating code that works specifically for them.

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 4 of 29

Plug-in architecture
There are lots of ways to implement plug-ins in your applications. Let’s look at a few
examples.

The Class Browser

The Class Browser utility was designed to be extended with add-ins. (As Wikipedia notes,
“add-in” is synonymous with “plug-in.”) There are two aspects to this:

 Everything you can do in the Class Browser is handled in custom methods rather
than in events like Click. This design means you can do anything programmatically
without using the user interface.

 The Class Browser calls add-ins from many places: just about every method of the
form and the controls in the form has code like this:

 * Code that always executes
 IF this.AddInMethod(PROGRAM())
 RETURN
 ENDIF
 * Code that only executes if an add-in wasn't executed

(If you want to see the source code for the Class Browser, unzip XSource.zip in the
Tools\XSource subdirectory of the VFP home directory, then look in VFPSource\Browser.)

The AddInMethod method looks in the browser table (by default, Browser.dbf in the VFP
home folder, which on a Windows Vista or later system is actually virtualized to
C:\Users\UserName\AppData\Local\VirtualStore\Program Files (x86)\Microsoft Visual
FoxPro 9\Browser.dbf) for all records with TYPE = “ADDIN,” ID = “METHOD,” METHOD =
“*” (meaning a global add-in that executes on every call) or METHOD = the passed-in name,
and FILEFILTER is either empty or contains a file specification that matches the file
currently open in the Class Browser (meaning add-ins can be specific for certain files only).
For each record that matches, AddInMethod calls DoAddIn to execute the add-in. Add-ins
can be a class (the CLASSNAME and CLASSLIB fields contain the appropriate information),
a form (the PROGRAM field contains the name of the form, including an SCX extension), or a
program (the PROGRAM field contains the name of the program). All add-ins must accept at
least one parameter: a reference to the Class Browser form, which allows them access to all
public properties and methods of the Class Browser.

AddInMethod returns .T. if at least one add-in was called and the lNoDefault property is .T.
As you can see in the code above, most calling methods only execute the rest of the code if
AddInMethod returns .F. Since AddInMethod specifically sets lNoDefault to .F. before
calling any add-ins, the normal behavior is that after calling an add-in, the rest of the code
in the calling method executes. If an add-in wants to prevent that, it sets lNoDefault to .T.
before returning.

ClassBrowserAddinResize.PRG shows how an add-in can override the default behavior:

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 5 of 29

lparameters toBrowser
toBrowser.lNoDefault = .F.

To register an add-in (meaning add a record for it to the browser table), use the AddIn
method. For example, to register ClassBrowserAddinResize so it executes when the user
resizes the Class Browser window, open the Class Browser and type the following in the
Command window:

_oBrowser.AddIn('My first add-in', 'ClassBrowserAddInResize', 'Resize')

(The “Class Browser Methods” topic in the VFP help gives the complete syntax for the
AddIn method.)

Resize the Class Browser window and notice that the controls resize as expected. Then edit
ClassBrowserAddinResize.PRG and set lNoDefault to .T. Now when you resize the window,
the controls don’t resize.

You can also execute an add-in programmatically by calling DoAddIn and passing it the
add-in name.

If you don’t specify the third parameter, the add-in appears in the Add-ins shortcut menu
(right-click and choose Add-ins to display that menu) with the first parameter to AddIn
being the item shown in the menu.

Of course, a smart way to write an add-in is to have it self-register. Listing 1 shows some of
the code in Rick Schummer’s CBChangeFont Class Browser add-in (available from
http://tinyurl.com/pojnkx2) that allows you to change the font used by the Class Browser.
If the program isn’t called from the Class Browser, the code either uses AddIn to register
itself if the Class Browser is running or writes directly to Browser.dbf if not.

Listing 1. An add-in can register itself automatically.

* Self registration if not called from the Class Browser
IF TYPE("toBrowser")= "L"
 lcName = "Rick Schummer's Font Changer"
 lcComment = "Developed by RAS for online forum discussion and example"

 IF TYPE("_oBrowser")= "O"
 * If Class Browser is running, use Addin() method
 _oBrowser.Addin(lcName, STRTRAN(SYS(16),".FXP",".PRG"), "ACTIVATE", , , ;
 lcComment)
 ELSE
 * Use the low level access of the Browser registration table
 IF FILE(HOME() + "BROWSER.DBF")
 lcOldSelect = SELECT()

 USE (HOME() + "BROWSER") IN 0 AGAIN SHARED ALIAS curRASDateChanger
 SELECT curRASDateChanger
 LOCATE FOR Type = "ADDIN" AND Name = lcName

 IF EOF()

http://tinyurl.com/pojnkx2

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 6 of 29

 APPEND BLANK
 ENDIF

 * Always replace with the latest information
 REPLACE Platform WITH "WINDOWS", ;
 Type WITH "ADDIN", ;
 Id WITH "METHOD", ;
 Name WITH lcName, ;
 Method WITH "ACTIVATE", ;
 Program WITH LOWER(STRTRAN(SYS(16), ".FXP", ".PRG")), ;
 Comment WITH lcComment
 USE

 SELECT (lcOldSelect)
 ELSE
 MESSAGEBOX("Could not find the table " + HOME() + "BROWSER.DBF" + ;
 ", please make sure it exists.", 0 + 48, _screen.Caption)
 ENDIF
 ENDIF

 RETURN

To un-register an add-in, call AddIn with NULL as the second parameter:

_oBrowser.AddIn('My Resize add-in', NULL)

For more details on Class Browser add-ins, see Advanced Object Oriented Programming
with Visual FoxPro 6.0 by Markus Egger, available from Hentzenwerke Publishing
(www.hentzenwerke.com).

The pros of the Class Browser approach are:

 It’s extremely extensible. An add-in can access all properties and methods and can
override the behavior of any function.

 An add-in has full access to the Class Browser user interface so it can hide some
controls, add new controls, or completely change the user interface as it sees fit.

 Add-ins are executed automatically; there’s nothing the user has to do to launch one.

The cons are:

 It requires programmatic registering of add-ins. However, since it’s a developer and
not an end-user tool, that really isn’t a problem, and if necessary, a simple user
interface could easily be created.

 From a programming point-of-view, it’s a lot of work to set up, since every method
has to call AddInMethod.

 It’s possible to completely change the user interface. While that isn’t a problem for
the Class Browser, an end-user application may wish to limit what things it allows a
plug-in to change.

http://www.hentzenwerke.com/

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 7 of 29

HTML Help Builder

I’ve used Rick Strahl’s West Wind HTML Help Builder for more than 15 years. It makes
creating CHM help files easy and, dare I say it, fun (OK, not fun, but at least bearable). HTML
Help Builder is extensible in numerous ways, included user-definable templates,
customizable style sheets, user-defined fields, and like the Class Browser, add-ins. The
main difference between Class Browser and HTML Help Builder add-ins is that the latter
have to be manually invoked by the user from the Add-Ins item in the Tools menu.

To register an add-in, choose Add-In Manager from the Tools menu; see Figure 1. Click
New to register an add-in and specify the descriptive name and comments. The choices for
Add-in Type are .NET (a .NET DLL), FOX (a PRG, EXE, or APP), and COM (a COM DLL).
Specify the file containing the add-in, the class within the file, and the name of the method
to call. Click Save to save the add-in and add it to the Add-Ins menu.

Figure 1. The Help Builder Add-In Manager allows you to add plug-ins to HTML Help Builder.

Like the Class Browser, HTML Help Builder stores information about registered add-ins in
a table; in this case, C:\Users\UserName\Documents\Html Help Builder
Projects\Addins.dbf.

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 8 of 29

Also like the Class Browser, HTML Help Builder passes add-ins a reference to the HTML
Help Builder form. This allows the add-in to modify the user interface if desired, but it’s
more likely an add-in will use the oHelp member of the form, which is a reference to the
help builder engine that does all the actual work in HTML Help Builder.

Listing 2 shows the code for FixHelp.PRG, an add-in I use with HTML Help Builder. This
add-in does three things:

 Enables searching within the HTML files generated when the help is built (there’s an
option for that in the build dialog but sometimes I forget to turn it on).

 Uses the icon I want for the main topic as opposed to the one HTML Help Builder
uses by default.

 Creates the CHM file and copies it up one folder level because I typically put my
HTML Help Builder project files in an HTMLHelp subdirectory of the application
folder.

To use this add-in, I click the Build Help button in the toolbar, select Don’t build Help File
because the add-in creates the CHM file later, and click Finish to generate the HTML files
for the help project. I then choose Generate Help (the name of my add-in) from the Add-Ins
menu and when it’s finished, the CHM file is in the parent directory of the project folder.

Listing 2. FixHelp.PRG is an HTML Help Builder add-in that generates a CHM file the way I want. (Some of the
code is omitted for brevity.)

lparameters tcPath
loFixer = createobject('FixHelp')
loFixer.Activate(tcPath)

#define CSIDL_PROGRAM_FILES 0x0026
#define HKEY_LOCAL_MACHINE -2147483646

define class FixHelp as custom
 function Activate(toHelpForm)

* Get a reference to the help object, then figure out the path for the current
* project.

 if vartype(toHelpForm) = 'C'
 lcProjectFile = toHelpForm
 else
 loHelp = toHelpForm.oHelp
 lcProjectFile = loHelp.cFileName
 endif vartype(toHelpForm) = 'C'
 lcPath = addbs(justpath(lcProjectFile))

* Turn on searching in case it wasn't turned on when the files were generated.

 lcFile = lcPath + 'index2.htm'
 lcText = filetostr(lcFile)
 lcText = strtran(lcText, 'var AllowSearch = false;', ;

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 9 of 29

 'var AllowSearch = true;')
 strtofile(lcText, lcFile)

* Remove the image number for the root node so it defaults to "auto".

 lcFile = forceext(lcProjectFile, 'hhc')
 lcText = filetostr(lcFile)
 lcText = strtran(lcText, '<param name="ImageNumber" value="11">' + ;
 chr(13) + chr(10), '', 1, 1)
 strtofile(lcText, lcFile)

* Find the location of HTML Help Workshop.

 lcProgramFiles = This.GetSpecialFolder(CSIDL_PROGRAM_FILES)
 lcRegVCX = addbs(lcProgramFiles) + ;
 'Microsoft Visual FoxPro 9\FFC\Registry.vcx'
 loRegistry = newobject('Registry', lcRegVCX)
 lcHHPath = ''
 lcKey = '\Microsoft\Windows\CurrentVersion\App Paths\hhw.exe'
 llGotPath = loRegistry.GetRegKey('Path', @lcHHPath, ;
 'SOFTWARE' + lcKey, HKEY_LOCAL_MACHINE) = 0

* Compile the CHM file if we found it. Log the results.

 if llGotPath
 lcHHPath = '"' + This.ShortPath(forcepath('hhc.exe', lcHHPath)) + '"'
 lcProjectFile = '"' + forceext(lcProjectFile, 'hhp') + '"'
 lcLogFile = '"' + addbs(justpath(lcProjectFile)) + 'log.txt"'
 erase (lcLogFile)
 lcBatFile = '"' + lcPath + 'runme.bat"'
 strtofile(lcHHPath + ' ' + lcProjectFile + ' > ' + lcLogFile + ;
 chr(13) + chr(10) + 'pause' + chr(13) + chr(10), lcBatFile)
 declare integer ShellExecute in SHELL32.DLL ;
 integer nWinHandle, string cOperation, string cFileName, ;
 string cParameters, string cDirectory, integer nShowWindow
 ShellExecute(0, 'Open', lcBatFile, '', '', 1)

* Copy the CHM file up one folder.

 lcCHMFile = forceext(lcProjectfile, 'CHM')
 lcNewFile = forcepath(lcCHMFile, fullpath('..\', lcCHMFile))
 if file(lcCHMFile)
 copy file (lcCHMFile) to (lcNewFile)
 endif file(lcCHMFile)
 else
 messagebox('Cannot locate HTML Help Workshop')
 endif llGotPath
 return .T.
 endfunc
enddefine

The pros of the HTML Help Builder approach are:

 Registering add-ins is done through a simple user interface.

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 10 of 29

 Programmatically, it’s easy to set up because there’s just the registration table, the
user interface, and the menu of registered items.

 An add-in has full access to the HTML Help Builder user interface so it can hide some
controls, add new controls, or completely change the user interface as it sees fit.

The cons are:

 Add-ins have to be executed manually through a menu item.

 It’s not as extensible as the Class Browser: you can’t override the behavior of
existing functions; you can only supplement their behavior.

 It’s possible to completely change the user interface. Since HTML Help Builder is
mostly a tool for advanced users, that isn’t as big of a problem as it would be for an
end-user application.

Stonefield Query

My company’s main product, Stonefield Query, is an end-user ad-hoc reporting solution. In
order to work with any database, it needs to be extremely flexible and extensible. There are
several ways plug-ins work in Stonefield Query:

 Scripting: you can write code that Stonefield Query executes at various places. These
scripts are defined in Stonefield Query Studio, the tool used by a developer to
customize Stonefield Query for an application’s database (Figure 2). Scripts are
usually written using VFP code but can also be written in VBScript, JavaScript,
VB.NET, or C#. There are three types of scripts:

o Data object scripts, which execute when determining the connection
information for the database, when connecting to a database, or when
retrieving data from a virtual table.

o Event scripts, which execute at certain places in the application’s lifetime,
such as at startup, before the user logs in, before a report is run, and so on.

o User scripts, which don’t execute automatically but are called from other
scripts or when calculated fields are evaluated.

 Named code files: at certain points, the application looks for code files with specific
names. For example, during setup, if a file named Setup.sqs exists (“SQS” stands for
“Stonefield Query Script”), the code in that file executes. Also, if a file named
RepProcs.prg exists, Stonefield Query uses SET PROCEDURE TO to make the
functions in that file accessible anywhere in the application that expressions can be
used, such as in the header of a report. The difference between scripts and code files
is that scripts are stored in a table and therefore aren’t accessible to the user at
runtime while code files are just text files the user can create if necessary.

 Functions: a special folder named Functions can contain PRG files. These PRGs are
mainly used as user-defined functions for calculated fields defined by the user but
can also be used anywhere else an expression can use used in Stonefield Query

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 11 of 29

because the application uses SET PATH TO Program Folder\Functions early in its
startup.

Figure 2. You can create scripts to customize the behavior of Stonefield Query.

The pros of the Stonefield Query approach are:

 Scripts are created in a user interface with code editing features, including
IntelliSense for both VFP syntax and the application’s object model.

 Plug-ins (script or code file) have full access to the Stonefield Query object model,
either by being passed a reference to the application object or accessing it through a
global variable.

 Plug-ins are executed automatically, either because they’re called from certain
events or because they’re called when an expression is evaluated.

 Plug-ins have limited access to the user interface (mostly just the menu) so they
can’t change much (this is both an advantage and a disadvantage).

The cons of the Stonefield Query approach are:

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 12 of 29

 It’s not as extensible as the Class Browser: you can override the behavior of some
existing functions but not all.

 Plug-ins have limited access to the user interface so they can’t change much. Of
course, this could be changed if necessary by exposing the user interface objects to
plug-in code.

 Because the end-user can create code files at runtime, it’s possible that a malicious
user could write code that damages files or does other mischief. This can be
mitigated by limiting access to the physical folders where the code files are stored.

The rest of this document examines the Stonefield Query approach in more detail because I
think it’s more applicable to end-user applications than the others.

My plug-in architecture
There are two types of scripting you can use: file and table. As noted earlier, Stonefield
Query uses both.

In the case of a file-based script, your application looks for a file with a specific name or in a
specific directory, and if it exists, executes the code in that file. It could be a PRG (in which
case you’ll need to compile it first), an FXP, or a text file that you’ll use FILETOSTR() to read
the contents and then EXECSCRIPT() to execute. There are a few advantages of file-based
scripts:

 There’s no “registration” process required: you simply create or drop the file into
the appropriate directory.

 It’s easily edited using Notepad, so you can talk even non-developers through any
changes over the phone.

Table-based scripts exist in a table. Typically, the table has a Name field so you can find the
desired record and a memo field to contain the code. When a script should be executed, you
find the appropriate record in the table and use EXECSCRIPT() to execute the code or write
the memo out to a temporary PRG, compile the PRG to an FXP, call the FXP, and then delete
the PRG and FXP files. For improved performance, you could even pre-compile the source
code and store the object code in another memo, then write that memo out to an FXP and
execute it without having to compile it first. Here are the advantages of table-based scripts:

 The code is relatively secure: someone needs an application that can read from and
write to DBF files to view or change the script. If security is a concern, you could
place the table in a directory that all users have read access to but only certain users
have write access, encrypt the file or its contents, or even use SQL Server as the
script repository.

 You can provide a script editor utility, which would be easier for the user to work
with and in which you have additional control over the code the user enters (you
can check for certain types of errors, you can add additional code such as
parameters statements behind the scenes, etc.).

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 13 of 29

I typically use table-based scripts for most scripting in my applications and file-based
scripts for temporary scripting. An example of the latter is diagnostics. In some situations,
it may be difficult to track down the cause of a customer’s problem: their data may have
some bad records, their environment may be completely different from yours, the
application may not have been correctly installed or configured, etc. In parts of your code
particularly sensitive to these issues, you can check to see if a script file exists, and if so,
execute it. The script file might do some diagnostics, dump the results to a text file or
temporary table, and email the results to you. When you’ve resolved the problem, you
simply delete the script file to turn off diagnostics.

Scripting issues

While providing great flexibility, scripting your applications comes at a price.

 Performance: As you likely know, calling a subroutine is slower than in-line code. It
gets worse with script code because there are several steps required before the code
is actually called. In the case of file-based scripts, you must check for the existence of
a script file using FILE() and compile it if it’s a PRG. In the case of table-based
scripts, you have to find the script record (although using SEEK makes short work of
that), then use EXECSCRIPT(). All these things take time. Not necessarily a lot of
time, but you likely want to avoid calling a script in performance-sensitive code or
within a loop.

 Security: A knowledgeable but ethically challenged user might put malicious code
into a script. For example, they might change a script executed at the end of an order
processing routine to email credit card information to a third party. To prevent this,
you have to either shield things the user shouldn’t have access to from the script
code or specifically look for suspicious code (sort of like virus pattern scanning that
anti-virus utilities use). However, even well-meaning users can cause problems: a
tweak to a script to make it better can make it worse, not function at all, return bad
results, etc. Only authorized users should be able to create or make changes to
scripts.

 Data access: The script code can’t assume it has access to open cursors. For example,
if a form with a private data session calls a script manager to execute a script, unless
the script manager was instantiated from the form, it’ll “live” in a different data
session, so the script code it calls won’t see any of the data the form is working with.
Another possibility: as we’ll see later, you might want the script code to be VBScript,
JavaScript, or .NET code, so that script code certainly couldn’t touch any VFP
cursors. One solution to this is to pass any data needed as a parameter to the script
using arrays, objects with properties holding the data, XML, or ADO. Another
solution is to use a robust object model in your application, such as that provided by
most VFP frameworks or an n-tier design.

 Error handling: Handling errors in script code can be more complicated than
handling errors in the rest of your application. Although the code is executed by
calling a file or using EXECSCRIPT(), it’s likely called from an object, so any errors
fire the Error method of that object rather than calling the ON ERROR handler. That

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 14 of 29

means any object calling a script needs to ensure that it can handle any errors that
may occur in that script, even though it has no knowledge of what that script does.
The solution to this issue is to use a TRY structure to ensure all errors are trapped
locally.

 Language: Although we love VFP, the reality is that most people even remotely
familiar with programming haven’t even heard of it, let alone know how to code in
it. Far more popular are languages such as JavaScript, VB.NET, and C#. Fortunately,
there are a couple of solutions for this issue. In the case of JavaScript, use the
Microsoft Script Control. This COM object can execute VBScript or JavaScript code,
and can be instantiated and used from VFP. For VB.NET and C#, Craig Boyd created
VFPDotNet, a library that allows .NET code to be executed from VFP
(http://tinyurl.com/3cvb9r6). One of my developers adapted Craig’s code to create
the DotNetScript library. We’ll discuss these in more detail later.

Calling script files

As I mentioned earlier, file-based scripts are ideal for temporary things, like turning on
diagnostics or perhaps implementing a patch for a problem prior to a full release of a new
version of the application.

Here’s some code, taken from an application object, which calls a script file, if it exists,
during application startup. The application object has a cScriptDir property that contains
the location of script files. In this case, if a file called Startup.ssf exists (the “SSF” extension
stands for “Stonefield Script File”), its contents are read in and executed using
EXECSCRIPT().

lcFile = This.cScriptDir + 'startup.ssf'
if file(lcFile)
 lcCode = filetostr(lcFile)
 if not empty(lcCode)
 try
 execscript(lcCode)
 catch
 endtry
 endif not empty(lcCode)
endif file(lcFile)

Earlier, I mentioned that I turned on the export feature of Stonefield Query for a
prospective customer. I did this by emailing him Setup.sqs, which had just one line of code
to remove the Skip For condition from the Export function in the menu:

oApp.oMenu.FilePad.FileExportReport.cSkipFor = ''

This code’s simplicity is just one reason to love OOP-based menus such as those provided
by the OOP Menu VFPX project (http://tinyurl.com/p2nlnmd).

http://tinyurl.com/3cvb9r6
http://tinyurl.com/p2nlnmd

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 15 of 29

Table-based scripts

My implementation of table-based scripting has three components: a script table to contain
the scripts, a script manager to manage the scripts, and script objects to actually execute
the code.

The script table (shown in Figure 3) is pretty simple: it just consists of columns for the
name of the script (NAME), the script type (SCRIPTTYPE, which contains 1 for VFP code, 2
for VBScript, 3 for JavaScript, 4 for C#, and 5 for VB.NET), the code for the script (the CODE
memo), and a logical field to indicate if the script should be used or not (ACTIVE). It has a
tag on UPPER(NAME) so SEEK can be used to locate the desired script. The script manager
uses the active records in this table to fill a collection of script objects.

Figure 3. The script table has a simple structure.

Next, let’s look at the script classes. SFScript is a simple class based on SFCustom (a
subclass of Custom) with just a few custom properties: cName, the name of the script;
cCode, the code for the script; cID, the ID for the script; and nScriptType, the script type
value. It has just one custom method, Execute, which executes the script; that method is
empty in this class. It also has lErrorOccurred and cErrorMessage properties (which are
actually defined in SFCustom) which contain information about any errors that occur
during code execution.

SFScriptVFP is a subclass of SFScript used for scripts with VFP code. It overrides the
Execute method (Listing 3) to execute the VFP code. It accepts up to ten parameters that
should be passed to the VFP code; you can change this if you need more parameters. Note
that only those parameters actually passed in are passed to the script code to prevent
“must pass additional parameters” errors. In a runtime environment, EXECSCRIPT() is used
to execute the script code. However, in a development environment, where you may want
to debug the code, we’ll take a different approach. It turns out that one of the easiest ways
to crash VFP is to open the debugger from within code executed by EXECSCRIPT(). So, to
avoid that, we’ll write the code out to a temporary PRG file and then call that PRG.

Listing 3. SFScriptVFP.Execute executes VFP script code.

lparameters tuParam1, ;
 tuParam2, ;
 tuParam3, ;
 tuParam4, ;
 tuParam5, ;

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 16 of 29

 tuParam6, ;
 tuParam7, ;
 tuParam8, ;
 tuParam9, ;
 tuParam10
local lcParms, ;
 lnI, ;
 lcFile, ;
 lcPath, ;
 luReturn, ;
 loException as Exception

* Build a list of parameters to pass.

lcParms = ''
for lnI = 1 to pcount()
 lcParms = lcParms + iif(empty(lcParms), '', ',') + 'tuParam' + ;
 transform(lnI)
next lnI

* Clear any previous error information.

This.lErrorOccurred = .F.
This.cErrorMessage = ''

* If this is the development version, we'll copy the code to a PRG and call it
* as a function so we can properly debug it if necessary. Otherwise, use
* EXECSCRIPT() to execute it.

if version(2) = 2
 lcFile = forceext(addbs(sys(2023)) + sys(2015), 'PRG')
 erase (forceext(lcFile, 'FXP'))
 strtofile(This.cCode, lcFile)
 if not upper(sys(2023)) $ set('PATH')
 lcPath = sys(2023)
 set path to "&lcPath" additive
 endif not upper(sys(2023)) $ set('PATH')
 try
 luReturn = evaluate(juststem(lcFile) + '(' + lcParms + ')')
 catch to loException
 This.lErrorOccurred = .T.
 This.cErrorMessage = loException.Message
 This.oException = loException
 endtry
 try
 erase (forceext(lcFile, 'FXP'))
 erase (lcFile)
 catch
 endtry
else
 try
 luReturn = execscript(This.cCode, &lcParms.)
 catch to loException
 This.lErrorOccurred = .T.
 This.cErrorMessage = loException.Message

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 17 of 29

 This.oException = loException
 endtry
endif version(2) = 2
return luReturn

SFScriptMSScript is also a subclass of SFScript; it’s used for scripts that have VBScript and
JavaScript code. The key to executing VBScript or JavaScript code is to use the Microsoft
Script Control. This ActiveX control can be dropped on a VFP form or instantiated in code.
Set the Language property to either “VBScript” or “JavaScript,” call the AddCode method to
hand it the code to execute, and then call the Run method to execute it. For documentation
on the Microsoft Script Control, search the MSDN Web site (http://msdn.microsoft.com).
One article I found useful was “Script Happens” by Andrew Clinick
(http://tinyurl.com/3rq5fad).

SFScriptMSScript has two additional properties: oScript, which contains an object
reference to the Microsoft Script Control object, and cLanguage, which contains the name of
the language for the script code. The Execute method (Listing 4) first ensures we have a
Microsoft Script Control object by calling CheckScriptControl, which instantiates
MSScriptControl.ScriptControl (the ProgID for the control) into the oScript property if not.
Execute then sets the control’s Language property to the value in its own cLanguage
property, calls the Reset method to ensure the control is reset to a fresh state (the control
may have been used by a previous call), and calls the AddCode method to provide the
control with the code to execute. If there are any compile errors in the code (such as syntax
errors), the CATCH block executes, setting lErrorOccurred to .T. and preventing the rest of
the code from executing. Otherwise, Execute creates a list of parameters and calls the Run
method of the script control. Note that the way you actually call Run is different than the
documentation for the script control indicates; you simply pass the name of the function to
execute (this code assumes that the code contains “Function Main”), followed by any
parameters to pass to the function.

Listing 4. SFScriptMSScript.Execute executes VBScript and JavaScript code.

lparameters tuParam1, ;
 tuParam2, ;
 tuParam3, ;
 tuParam4, ;
 tuParam5, ;
 tuParam6, ;
 tuParam7, ;
 tuParam8, ;
 tuParam9, ;
 tuParam10
local lcCode, ;
 lnPos, ;
 lnSkip, ;
 lcParms, ;
 lnI, ;
 luReturn, ;
 loException as Exception
with This

http://msdn.microsoft.com/
http://tinyurl.com/3rq5fad

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 18 of 29

* Ensure we have a script control object, then set things up and add the script code
* to it.

 if .CheckScriptControl()
 .lErrorOccurred = .F.
 .cErrorMessage = ''
 .oException = .NULL.
 try
 .oScript.Language = .cLanguage
 .oScript.Reset()
 lcCode = .cCode
 lnPos = at(ccCRLF, lcCode)
 lnSkip = 2
 if lnPos = 0
 lnPos = at(ccCR, lcCode)
 lnSkip = 1
 endif lnPos = 0
 if lnPos = 0
 lnPos = at(ccLF, lcCode)
 lnSkip = 1
 endif lnPos = 0
 if .cLanguage = 'VBScript'
 lcCode = stuff(lcCode, lnPos + lnSkip, 0, ;
 'on error resume next' + ccCRLF)
 endif .cLanguage = 'VBScript'
 .oScript.AddCode(.cCode)

* If the code is OK, build a list of parameters to pass, then run the code.

 if not .lErrorOccurred
 lcParms = ''
 for lnI = 1 to pcount()
 lcParms = lcParms + ',' + 'tuParam' + transform(lnI)
 next lnI
 luReturn = .oScript.Run('Main' &lcParms)
 endif not .lErrorOccurred
 .oScript.Reset()
 catch to loException
 .lErrorOccurred = .T.
 .cErrorMessage = loException.Message
 .oException = loException
 endtry
 endif .CheckScriptControl()
endwith
return luReturn

SFScriptDotNet is similar to SFScriptMSScript, but it uses DotNetScript.ScriptEngine to
execute code. Its Execute method (Listing 5) is a little more complex. First, it accepts an
array of all scripts using the same language. It needs that because one script may call
another script, and all code has to be in the same assembly. Second, it has to build an array
of parameters since we don’t want a variable number of parameters passed to the .NET
code that executes the script code.

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 19 of 29

Listing 5. SFScriptDotNet.Execute executes VB.NET and C# code.

lparameters taScripts, ;
 tuParam1, ;
 tuParam2, ;
 tuParam3, ;
 tuParam4, ;
 tuParam5, ;
 tuParam6, ;
 tuParam7, ;
 tuParam8, ;
 tuParam9, ;
 tuParam10
local lcMethod, ;
 lnParamCount, ;
 laParamArray[1, 2], ;
 lnI, ;
 lcCurrParam, ;
 luReturn
with This
 if .CheckScriptControl()
 .lErrorOccurred = .F.
 .cErrorMessage = ''
 .oException = .NULL.
 try
 lcMethod = .oScript.GetValidIdentifier(.cName, .nScriptType)
 lnParamCount = pcount() - 1
 if lnParamCount > 0
 dimension laParamArray[lnParamCount, 2]
 else
 laParamArray = ''
 endif lnParamCount > 0
 comarray(.oScript, 10) && zero-based arrays passed by reference

* Put the parameters into an array.

 for lnI = 1 to lnParamCount
 lcCurrParam = alltrim('tuParam' + transform(lnI))
 laParamArray[lnI, 1] = evaluate(lcCurrParam)
 laParamArray[lnI, 2] = 'ValueType'
 next lnI

* The RunCode signature in .NET is:
* object RunCode(string[] scripts, int codeType, string methodName,
* object[,] parameters)

 if .cLanguage = 'VBDotNet'
 luReturn = .oScript.RunCode(@taScripts, 2, lcMethod, ;
 @laParamArray)
 else
 luReturn = .oScript.RunCode(@taScripts, 1, lcMethod, ;
 @laParamArray)
 endif .cLanguage = 'VBDotNet'
 catch to loException
 .lErrorOccurred = .T.

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 20 of 29

 .cErrorMessage = loException.Message
 .oException = loException
 endtry
 endif .CheckScriptControl()
endwith
return luReturn

To use DotNetScript.ScriptEngine, you have to use RegAsm, a utility that’s part of the .NET
framework, to register DotNetScript.dll as a COM object. Be sure to specify /CODEBASE as a
parameter. You have to run it as administrator on Windows Vista or later systems, so you
may wish to create a BAT file with something like the following and run it as administrator:

C:\Windows\Microsoft.NET\Framework\v2.0.50727\regasm <path>\DotNetScript.dll"
/codebase

Of course, it’s better to install and register this DLL on a customer’s system using your
application’s installer rather than a BAT file.

The script manager class, SFScriptMgr, is based on SFCollection, a subclass of Collection.
The cFilePath property contains the name and path of the scripts table, and cAlias contains
the alias the table was opened with. (If you have more than one scripts table, set cFilePath
to a carriage return delimited list of them.) Call the FillCollection method, which is done
automatically when you set cFilePath via the Assign method for that property, to fill the
collection.

FillCollection (Listing 6) opens the scripts table, goes through the active records, and adds
an instance of a subclass of SFScript to the collection for each one. It also writes the code
for the script to a PRG with the name of the script (for example, if the script is named
GetCSZ, the PRG is named GetCSZ.prg) located in the user’s temporary files folder, which
the application includes in the path. The reason for doing that is so the script can be
executed as a user-defined function anywhere an expression is evaluated in addition to
being executed through the script manager. There are a couple of wrinkles with this:

 A script with a period in its name isn’t written out because it’s expected to be an
event script, which is only executed through the script manager.

 For non-VFP scripts like C#, the generated PRG doesn’t contain the code to execute,
since VFP can’t execute it directly, but is instead a wrapper that asks the script
manager to execute the code.

Listing 6. SFScriptMgr.FillCollection adds script objects to the collection.

local lnSelect, ;
 llReturn, ;
 lcTempDir, ;
 lcCode, ;
 lcName, ;
 loScript, ;
 lcFile, ;
 lnTries, ;

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 21 of 29

 loException as Exception
with This
 declare Sleep in Win32API integer nMilliseconds
 lnSelect = select()
 llReturn = .OpenTable()
 if llReturn
 lcTempDir = sys(2023)
 scan for Active and not empty(Code)
 lcCode = ''
 lcName = trim(Name)
 loScript = .Add(lcName, ScriptType)
 if vartype(loScript) = 'O'
 loScript.cCode = Code
 loScript.nScriptType = ScriptType
 loScript.cID = sys(2015)
 do case

* Ignore scripts with a period in the name (ie. data object and event scripts).

 case '.' $ Name

* If this is a VFP script, grab the code.

 case ScriptType = 1
 lcCode = Code

* For all other script types, create a PRG with the same name as the script
* that's a wrapper for oApp.oScriptMgr.Execute. That way, non-VFP scripts can
* be called as if they're built-in functions.

 otherwise
 text to lcCode textmerge noshow pretext 2
 lparameters tuParam1, tuParam2, tuParam3, tuParam4, ;
 tuParam5, tuParam6, tuParam7, tuParam8, ;
 tuParam9, tuParam10
 local lcParms, ;
 lnI, ;
 luReturn
 lcParms = ''
 for lnI = 1 to pcount()
 lcParms = lcParms + ',' + 'tuParam' + transform(lnI)
 next lnI
 luReturn = oApp.oScriptMgr.Execute('<<lcName>>' &lcParms)
 return luReturn
 endtext
 endcase

* If we have code, write it out to the Windows temporary directory and compile
* it. That way, anything can run it by calling the script name as a function
* (this assumes the VFP path includes the Windows temporary directory).

 if not empty(lcCode)
 lcFile = lcTempDir + trim(Name) + '.prg'
 strtofile(lcCode, lcFile)
 lnTries = 1

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 22 of 29

 do while not file(lcFile) and lnTries < 5
 lnTries = lnTries + 1
 Sleep(1000)
 enddo while not file(lcFile) ...
 try
 compile (lcFile)
 catch to loException
 endtry
 endif not empty(lcCode)
 endif vartype(loScript) = 'O'
 endscan for Active ...
 endif llReturn
 select (lnSelect)
endwith
return llReturn

The Add method (Listing 7), called from FillCollection, instantiates a script object of the
desired type. In the case of SFScriptMSScript or SFScriptDotNet objects, it also instantiates
a reference to an MSScriptControl or DotNetScript.ScriptEngine object if it hasn’t already
been done.

Listing 7. The Add method instantiates the appropriate subclass of SFScript and adds it to the collection.

lparameters tcName, ;
 tnType
local lnType, ;
 llOK, ;
 loScript
with This
 lnType = iif(vartype(tnType) = 'N', tnType, 0)
 do case

* If we're using an MSScript object, instantiate the MSScriptControl if we
* haven't already done so and set the oScript property of the object. If we
* can't instantiate the control, remove the script object from our collection.

 case inlist(lnType, 2, 3)
 if vartype(.oMSScript) <> 'O'
 try
 .oMSScript = createobject('MSScriptControl.ScriptControl')
 catch
 endtry
 endif vartype(.oMSScript) <> 'O'
 llOK = vartype(.oMSScript) = 'O'

* If we're using a VB or C# script, instantiate DotNetScript.ScriptEngine if we
* haven't already done so and set the oDotNet property of the object. If we
* can't instantiate the control, remove the script object from our collection.

 case inlist(lnType, 4, 5)
 if vartype(.oDotNet) <> 'O'
 try
 .oDotNet = createobject('DotNetScript.ScriptEngine')
 catch

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 23 of 29

 endtry
 endif vartype(.oDotNet) <> 'O'
 llOK = vartype(.oDotNet) = 'O'

* We're using VFP script, so we're OK so far.

 otherwise
 llOK = .T.
 endcase

* Instantiate the appropriate control.

 loScript = .NULL.
 do case
 case not llOK
 case lnType = 1
 loScript = newobject('SFScriptVFP', 'SFScript.vcx')
 loScript.cName = tcName
 dodefault(loScript, tcName)
 case lnType = 2
 loScript = newobject('SFScriptMSScript', 'SFScript.vcx')
 loScript.cName = tcName
 loScript.cLanguage = 'VBScript'
 loScript.oScript = .oMSScript
 dodefault(loScript, tcName)
 case lnType = 3
 loScript = newobject('SFScriptMSScript', 'SFScript.vcx')
 loScript.cName = tcName
 loScript.cLanguage = 'JavaScript'
 loScript.oScript = .oMSScript
 dodefault(loScript, tcName)
 case lnType = 4
 loScript = newobject('SFScriptDotNet', 'SFScript.vcx')
 loScript.cName = tcName
 loScript.cLanguage = 'CSharp'
 loScript.oScript = .oDotNet
 dodefault(loScript, tcName)
 case lnType = 5
 loScript = newobject('SFScriptDotNet', 'SFScript.vcx')
 loScript.cName = tcName
 loScript.cLanguage = 'VBDotNet'
 loScript.oScript = .oDotNet
 dodefault(loScript, tcName)
 endcase
 nodefault
endwith
return loScript

To determine if a script with a certain name exists, call the DoesScriptExist method; this
method simply calls the Item method of the collection class to determine if that name exists
in the collection or not.

To actually execute the script, call the Execute method, passing the name of the script and
up to ten parameters to pass to the script code (feel free to change this if you need more

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 24 of 29

parameters). This method, shown in Listing 8, first checks to see if the specified script
exists, and sets the cErrorMessage property if not. If so, it gets the script object for the
script and builds a list of parameters to pass (only those parameters actually passed in are
passed to the script object). In the case of a .NET script, it calls GetArray to create an array
of all scripts using the same language; it does that in case one script calls another script,
since all the code has to be compiled into a single assembly. It then calls the Execute
method of the object and sets its own lErrorOccurred and cErrorMessage properties to
those of the script object so the caller can determine if there was a problem with the script,
and returns the result of the script code.

Listing 8. SFScriptMgr.Execute executes the specified script.

lparameters tcName, ;
 tuParam1, ;
 tuParam2, ;
 tuParam3, ;
 tuParam4, ;
 tuParam5, ;
 tuParam6, ;
 tuParam7, ;
 tuParam8, ;
 tuParam9, ;
 tuParam10
local luReturn, ;
 loScript, ;
 lcParms, ;
 laScripts[1]
with This

* Reset the error information.

 .cErrorMessage = ''
 .lErrorOccurred = .F.
 .oException = .NULL.

* Ensure a valid script name was specified.

 if vartype(tcName) <> 'C' or empty(tcName)
 .cErrorMessage = 'Invalid script name specified'
 luReturn = .F.

* Ensure the specified script exists. If so, build a list of parameters to
* pass.

 else
 loScript = .Item(tcName)
 if vartype(loScript) = 'O'
 lcParms = .CreateParameters(pcount() - 1)
 if inlist(loScript.nScriptType, 4, 5)
 .GetArray(@laScripts, loScript.nScriptType)
 if empty(lcParms)
 luReturn = loScript.Execute(@laScripts)
 else

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 25 of 29

 luReturn = loScript.Execute(@laScripts, &lcParms)
 endif empty(lcParms)
 else
 luReturn = loScript.Execute(&lcParms)
 endif inlist(loScript.nScriptType, 4, 5)
 .lErrorOccurred = loScript.lErrorOccurred
 .cErrorMessage = loScript.cErrorMessage
 .oException = loScript.oException
 else
 .cErrorMessage = 'Script ' + tcName + ' does not exist'
 luReturn = .F.
 endif vartype(loScript) = 'O'
 endif vartype(tcName) <> 'C' ...
endwith
return luReturn

Other methods of SFScriptMgr are for script management, including SaveItem, which saves
a script, and Remove, which removes a script from the collection and deletes it from the
table.

Check it out

TestScript.prg tests the script manager by executing a VBScript script that displays a
message box and changes the caption of a passed form. Here’s the code from this PRG:

loScript = newobject('SFScriptMgr', 'SFScript')
loScript.cFilePath = 'SFScript.dbf'

loForm = createobject('Form')
loForm.Show()
loForm.Caption = 'this is a test'

lcValue = loScript.Execute('TestScript', loForm)
messagebox(lcValue)
messagebox('Form caption is now ' + loForm.Caption)

Here’s the VBScript code taken from the “TestScript” record in SFScript.dbf:

function Main(Form)
 msgbox "Form caption was " & Form.Caption
 Form.Caption = "Hello from VBScript"
 Main = "My return value"
end function

TestTaxes.prg shows an example mentioned earlier: scripting tax calculations. Here’s the
code that calls the CalculateTax script we looked at earlier:

if loScript.DoesScriptExist('CalculateTax')
 cursortoxml('', 'lcXML', 1, 0, 0, '1')
 lnTax = loScript.Execute('CalculateTax', lcXML)
else
 calculate sum(0.05 * Unit_Price * Quantity) to lnTax
endif loScript.DoesScriptExist('CalculateTax')

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 26 of 29

messagebox(lnTax, 0, 'Total Tax for Order 2')

Here’s an example of a C# script named GetTaxRate. Note that the name of the method in
the script must match the name of the script:

public static double GetTaxRate(string category)
{
 double rate;
 switch (category)
 {
 case "Dairy Products":
 rate = 0.03;
 break;
 case "Seafood":
 rate = 0.05;
 break;
 case "Grains/Cereals":
 rate = 0;
 break;
 default:
 rate = 0.045;
 break;
 }
 return rate;
}

The following code calls that script to get the tax rate for a certain category of product:

lnRate = loScript.Execute('GetTaxRate', 'Seafood')

Real examples

Stonefield Query for Sage Pro is a version of Stonefield Query customized for the Sage Pro
accounting system. Sage Pro stores its data in either DBF files or in SQL Server; which is
used is determined by a setting in Pro.ini. Sage Pro uses two or more databases: one for
“system” data (data not specific to a certain company) and the one for each company the
application keeps accounting information for. So, Stonefield Query needs to know two
things:

 How to connect to the system database: using native access for VFP or SQL
passthrough for SQL Server.

 Which database (companies) the user can report on.

It does this through a ProData.GetDataSources event script that executes at startup. The
script looks at Pro.ini so it knows whether VFP or SQL Server is used (and in the case of
SQL Server, what DSN to use to connect to the database), opens the table containing
company information (USE for VFP data, SQLEXEC() for SQL Server), and populates a
collection of “data sources” (our terminology for connection to a specific database) the user
can report on.

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 27 of 29

The user can customize the Sage Pro database to some extent: they can specify the length
and format for certain fields, such as GL account numbers, inventory part numbers, etc. We
want to support that customization in Stonefield Query, so another event script named
DataEngine.GetCustomMetaData opens the Sage Pro customization tables and goes through
the records in them, updating our data dictionary as necessary.

Older versions of Sage Pro included a report writer but that was discontinued after version
6.5. However, some users may still have reports from that report writer that they need to
run. We created a utility that converts Sage report writer reports to Stonefield Query
reports and wrote an Application.SetupMenu script, which executes after the menu has
been created, to add a function to the File menu to call that utility. Because we use an OOP
menu, adding items to the menu is easy; here’s the code for that script:

lparameters toApplication as SQApplication, toMenu
local loBar
loBar = toMenu.FilePad.AddBar('FileImportFF')
with loBar
 .cBarPosition = 'before FileExportReport'
 .cPictureFile = 'importxpsmall.bmp'
 .cCaption = 'Import ACCPAC Report &Writer Reports...'
 .cStatusBarText = 'Import reports from the ACCPAC Report Writer 6.5 or earlier'
 .cOnClickCommand = 'ImportFF()'
 .cSkipFor = "type('_screen.ActiveForm.lCanImport') <> 'L' or " + ;
 "not _screen.ActiveForm.lCanImport"
endwith
toMenu.FilePad.Show()

Notice this script is passed references to the Stonefield Query application object and to the
menu object. Of course, it also has access to anything within the application, including the
main form (_screen.ActiveForm). When the user chooses this function, it calls another
script, ImportFF, to do the conversion.

Like most accounting applications, Sage Pro consists of several modules, such as General
Ledger, Accounts Receivable, and Inventory Control. Not all modules may be available; for
example, a law firm likely wouldn’t purchase the Inventory Control module. Stonefield
Query should only show tables the user can actually report on, so it should remove those
that belong to modules that aren’t installed. The DataEngine.AfterDataGroupsLoaded event
script, called after the data dictionary has been set up, handles that. It opens the Sage Pro
system table containing the names of the installed modules and removes from the data
dictionary those tables the user shouldn’t see.

Since SQL Server doesn’t have the concept of a blank date, dates that have no value (such as
the date an item is shipped if it hasn’t been shipped yet) are assigned the value
01/01/1900. Users don’t like that; they’d rather see a blank in the report. The
DataEngine.AfterPerformQuery event script (you can likely guess when it’s called) uses this
code to replace 01/01/1900 with a blank date for all Date and DateTime fields in the cursor
retrieved for a report:

ldDate = date(1900, 1, 1)

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 28 of 29

ltDate = dtot(ldDate)
for lnI = 1 to afields(laFields)
 lcField = laFields[lnI, 1]
 lcType = laFields[lnI, 2]
 do case
 case lcType = 'D'
 replace &lcField with {/} for &lcField = ldDate
 case lcType = 'T'
 replace &lcField with {/:} for &lcField = ltDate
 endcase
next lnI

There are lots of other scripts that customize Stonefield Query for Sage Pro to work the
way users expect, but these examples should give you some ideas of the capabilities of
plug-ins.

Summary
Plug-ins can provide many benefits to your applications: extending or altering the
functionality of the application, deploying new features without installing a new build, and
creating customer-specific versions of an application without maintaining different code
bases or many sets of CASE statements. As I’ve shown in this document, it isn’t difficult to
implement plug-in support: select an architecture that suits your needs and start coding!

Biography
Doug Hennig is a partner with Stonefield Software Inc. He is the author of the award-
winning Stonefield Database Toolkit (SDT); the award-winning Stonefield Query; the
MemberData Editor, Anchor Editor, and CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My namespace and updated Upsizing Wizard in
Sedna.

Doug is co-author of VFPX: Open Source Treasure for the VFP Developer, Making Sense of
Sedna and SP2, the What’s New in Visual FoxPro series, Visual FoxPro Best Practices For The
Next Ten Years, and The Hacker’s Guide to Visual FoxPro 7.0. He was the technical editor of
The Hacker’s Guide to Visual FoxPro 6.0 and The Fundamentals. All of these books are from
Hentzenwerke Publishing (http://www.hentzenwerke.com). He wrote over 100 articles in
10 years for FoxTalk and has written numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers Conference (DevCon) starting in 1997
and at user groups and developer conferences all over the world. He is one of the
organizers of the annual Southwest Fox and Southwest Xbase++ conferences
(http://www.swfox.net). He is one of the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was a Microsoft Most Valuable
Professional (MVP) from 1996 through 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award (http://tinyurl.com/ygnk73h).

http://www.hentzenwerke.com/
http://www.foxrockx.com/
http://www.swfox.net/
http://vfpx.codeplex.com/
http://tinyurl.com/ygnk73h

Creating a Plug-in Architecture for Your Applications

Copyright 2015, Doug Hennig Page 29 of 29

http://www.hentzenwerke.com/catalog/hackfox7.htm
http://www.hentzenwerke.com/catalog/newin7.htm
http://www.hentzenwerke.com/catalog/wnvfp8.htm
http://www.hentzenwerke.com/catalog/wnvfp9.htm
http://www.hentzenwerke.com/catalog/vfpbp10.htm
http://www.hentzenwerke.com/catalog/makingsos.htm
http://www.stonefieldquery.com/sdt.html
http://www.stonefieldquery.com
http://vfpx.codeplex.com/
http://www.swfox.net
http://www.foxrockx.com/seite.htm

	Introduction
	Plug-in architecture
	The Class Browser
	HTML Help Builder
	Stonefield Query

	My plug-in architecture
	Scripting issues
	Calling script files
	Table-based scripts
	Check it out
	Real examples

	Summary
	Biography

