
Collecting Objects
Doug Hennig

Collection classes can help you reduce the complexity of your applications by eliminating multi-

column arrays or grouping related objects into one place. They can also help you create an interface

to your applications that can be used by the outside world.

 A collection is a group of related things. In Visual FoxPro, collections are everywhere: _SCREEN has

a Forms collection, a form has a Controls collection, a pageframe has a Pages collection, and so on.

Although they’re implemented differently in different places, collections generally have some things in

common:

 They have a property that returns the number of items in the collection. In the case of the Forms

collection, this property is called FormCount; for Controls, it’s called ControlCount; for Pages, it’s

called PageCount. For ActiveX collections, it’s frequently called Count, making it easier to deal with in

generic code. Sometimes this property is read-write (such as PageCount), but usually it’s read-only.

 They have a way to add and remove items from the collection. With native VFP collections, the way

varies; instantiating a new form automatically adds it to the Forms collection, while new pages are

created by incrementing the PageCount property. With ActiveX collections, there are usually Add or

AddItem and Remove or RemoveItem methods.

 They have a way to access items in the collection, usually by an index number. For the Forms

collection, it’s Forms[<index>]. For Pages, it’s Pages[<index>]. ActiveX collections frequently have an

Item method that can accept either an index number or the name of the desired item. Referencing an

item in a collection by name is easier (and often requires less code) than by index number. Some VFP

collections (like the Forms collection of _SCREEN) don’t allow this, but some (like the Forms and

Projects collections of _VFP) do.

 OK, so what does that have to do with reusable tools? Well, I’ve been finding myself creating and

using collections a lot lately. Often, these collections just consist of a class that contains an array of object

references. Sometimes, the objects in a collection are very simple: they don’t have any methods, but are just

holders of properties. Other times, they’re more complex objects, such as forms.

 Here are some of the places where collections might be used:

 A menu wrapper class: a menu is a collection of pads, each of which is a collection of bars (actually,

pads reference popups, but the wrapper class could hide this complexity). An object oriented menu

would be much easier to work with than VFP’s current menu system, which has changed little since

FoxPro 2.0.

 A custom DataEnvironment class: VFP’s DataEnvironment consists of two collections: cursors and

relations. A substitute for the native DataEnvironment could provide more functionality, such as

methods for saving and reverting tables rather than putting this code into a form.

 An application object’s forms collection: unlike the Forms collection of _SCREEN, which just has an

object reference to each open form, the forms collection of an application object could contain more

useful information, such as which toolbars they reference, whether they support multiple instances or

not, whether they add their captions to the Window menu, etc.

 VFP Automation server classes: one of the things that makes working with Automation servers like

Word and Excel easy is their rich object models, which usually consist of many collections of similar

objects. Many VFP developers are developing similar object models for their tools or applications,

allowing them to be used in many more ways than just a VFP user interface.

 Replacements for arrays: I originally created my collection class to replace an array property with many

columns. I found I was always forgetting which column certain information had to go into. It’s a lot

easier to understand and maintain code that simply sets or gets properties of objects in a collection than

working with rows and columns of an array.

 To make it easier to work with collections of objects, I created a couple of abstract classes intended to

be subclassed into specific collection classes: SFCollection and SFCollectionOneClass.

SFCollection
The VFP 5 version of SFCollection (found in SFCOLLECTION.VCX) is a subclass of SFCustom, our

Custom base class found in SFCTRLS.VCX. It has a Count property, which contains the number of items in

the collection, and a protected aItems array that contains references to the items. The AddItem and

RemoveItem methods add and remove items from the collection, and the Item method returns an object

reference to the specified item in the collection. Why use a method to access items in the collection rather

than just addressing the aItems array directly? Because we want to be able to reference items in the

collection the same way ActiveX controls and newer VFP collections allow, either by index number or

name. Here’s an example:

oCollection.Item(5)

oCollection.Item('Customer')

 VFP 5 doesn’t allow an element in an array to be accessed by anything other than a numeric subscript,

so we can’t access aItems like this. Instead, we’ll use an Item method that accepts either a numeric or

character parameter. If the parameter is numeric, we assume it’s the element number in the array. If it’s

character, we look for an item with that name.

 The VFP 6 version of SFCollection is also based on SFCustom, but it does things a little differently.

Because we now have access and assign methods, we can use an array called Item that contains the items in

the collection and access this array directly.

 The access method of a property is automatically fired whenever anything tries to access the value of

the property. Similarly, the assign method is fired whenever anything tries to change the value of the

property. Access and assign methods are named the same as the property with “_access” or “_assign” as a

suffix; for the Item property, these methods are called Item_Access and Item_Assign. When you create a

new property, check the “Access method” and “Assign method” checkboxes in the New Property dialog to

create these methods. VFP automatically puts code into these methods to accept the necessary parameters

and get or set the value of the property. However, you can override the behavior of these methods to do

whatever you want. We’ll see the code for some of these methods later.

 The advantage of using this approach is that in the VFP 6 version, Item is a property not a method. This

means you can use it to talk directly to an item in the collection. For example, you can use:

oCollection.Item[<index>].Property

In the VFP 5 version, you must use:

loObject = oCollection.Item[<index>]

loObject.Property

because Item is a method, not a property in this version. The VFP 6 version acts more like native

collections in VFP and ActiveX controls. Another advantage of access and assign methods: Count isn’t a

protected property, so in the VFP 5 version, improper values could be stored to it. The VFP 6 version uses

an Assign method to make it a read-only property.

 The methods in the two versions of this class are almost identical; we’ll look at the code for the VFP 6

version in this article. Here’s the code for the AddItem method:

lparameters tcClass, ;

 tcLibrary, ;

 tcName

local lnCount, ;

 loItem

with This

 .lInternal = .T.

 lnCount = .Count + 1

 dimension .Item[lnCount], .aNames[lnCount]

 loItem = newobject(tcClass, tcLibrary)

 .Item[lnCount] = loItem

 if vartype(tcName) = 'C' and not empty(tcName)

 .aNames[lnCount] = tcName

 if not ' ' $ tcName and isalpha(tcName)

 loItem.Name = tcName

 endif not ' ' $ tcName ...

 endif vartype(tcName) = 'C' ...

 .lInternal = .F.

endwith

return loItem

 This method accepts three parameters: the name of the class to create the new item from, the library

that class is defined in, and the name to assign to the item. AddItem creates an object of the specified class

(using either NEWOBJECT.PRG in VFP 5 or the new NEWOBJECT() function in VFP 6), stores the

object in a new row in the items array (aItems for VFP 5 and Item for VFP 6), and stores the specified name

so it can be used later to find the item (in the second column of the aItems array for VFP 5 and in the

protected aNames array for VFP 6). If the name is a valid VFP name, the name is also stored in the Name

property of the new object. An object reference to the new item is then returned so the code calling this

method can set properties or call methods of the new item. Notice something interesting in the VFP 6

version of this code: the Count property isn’t incremented. We’ll see why this is unnecessary later. Also

note the use of the lInternal property. This protected property is .T. only when method code of the

SFCollection class is executing. Access and assign methods of a property fire even when that property’s

value is accessed or assigned by methods of the property’s own class. However, you might want different

actions depending on whether the property is accessed or assigned from inside or outside the class. This flag

is used to distinguish internal calls from external ones. One last thing to note: this method uses the new

VARTYPE() function, which is much faster than the TYPE() function we’re used to using.

 The RemoveItem method accepts the index or name of the item to remove as a parameter. If the

specified item can be found (using the GetIndex method to find the element number of the item), the item is

removed from the items and names arrays. As with AddItem, note the value of the Count property isn’t

changed here. Here’s the code for this method:

lparameters tuIndex

local llReturn, ;

 lnIndex, ;

 lnCount

with This

 .lInternal = .T.

 lnIndex = .GetIndex(tuIndex)

 if lnIndex > 0

 adel(.Item, lnIndex)

 adel(.aNames, lnIndex)

 lnCount = .Count

 if lnCount = 0

 .InitArray()

 else

 dimension .Item[lnCount], .aNames[lnCount]

 endif lnCount = 0

 llReturn = .T.

 endif lnIndex > 0

 .lInternal = .F.

endwith

return llReturn

 Item_Access (the Access method for the Item array property) in the VFP 6 version is identical in

purpose to the Item method in the VFP 5 version, and has almost the same code:

lparameters tuIndex

local lnIndex, ;

 loReturn

with This

 lnIndex = iif(.lInternal, tuIndex, ;

 .GetIndex(tuIndex))

 loReturn = iif(lnIndex = 0, .NULL., .Item[lnIndex])

endwith

return loReturn

 This method accepts the index or name of the desired item as a parameter, and if that item exists,

returns an object reference to it.

 The GetIndex method is called from several other methods to convert a specified item index or name to

the appropriate element number in the items array (or 0 if the item wasn’t found). The VFP 5 and 6 versions

are almost identical; here’s the VFP 6 version code:

lparameters tuIndex

local lnCount, ;

 lnIndex, ;

 lcName, ;

 lnI

with This

 lnCount = .Count

 lnIndex = 0

 do case

* If the index was specified as a string, try to find

* a member object with that name.

 case vartype(tuIndex) = 'C'

 lcName = upper(alltrim(tuIndex))

 for lnI = 1 to lnCount

 if upper(.aNames[lnI]) == lcName

 lnIndex = lnI

 exit

 endif upper(.aNames[lnI]) == lcName

 next lnI

* If the index wasn't numeric, give an error.

 case not vartype(tuIndex) $ 'NIFBY'

 error cnERR_DATA_TYPE_MISMATCH

* If the index was numeric, give an error if it's

* out of range.

 otherwise

 lnIndex = int(tuIndex)

 if not between(lnIndex, 1, lnCount)

 error cnERR_INVALID_SUBSCRIPT

 lnIndex = 0

 endif not between(lnIndex, 1, lnCount)

 endcase

endwith

return lnIndex

 Earlier, I noted that the VFP 6 version of AddItem and RemoveItem didn’t adjust the value of the

Count property. That’s because Count_Access, the access method for this property, automatically calculates

the value whenever Count is accessed (in fact, you’ll see from this code that the value of Count is never in

fact changed; the access method just returns the proper value). Here’s the code:

local lnCount

with This

 lnCount = alen(.Item)

 lnCount = iif(lnCount = 1 and isnull(.Item[1]), ;

 0, lnCount)

endwith

return lnCount

 Count is a read-only property: you can read its value but not assign a new one. In VFP 5, there was no

way to do this directly with custom properties; you had to make the property protected and create a public

method to return its value. In VFP 6, this is easily done: simply create an assign method for the property

that gives an error whenever something tries to change the value of the property (in this code,

cnERR_PROPERTY_READ_ONLY is a constant defined in SFERRORS.H):

lparameters tuValue

error cnERR_PROPERTY_READ_ONLY

Of course, if your class needs to change the value of the property itself (remember in this case, Count is

never changed but always calculated as required), you’ll check the value of lInternal and store tuValue to

the property if the flag is .T.

 There are a few other methods in this class: Init calls the protected InitArray method to intialize the

items array, and Destroy nukes all object references.

SFCollectionOneClass
The AddItem method of SFCollection requires the class and library for the object to be passed as

parameters every time a new object is added to the collection. This can get to be drag when a collection

consists of objects from the same class. SFCollectionOneClass is a subclass of SFCollection used for single-

class collections. It has custom cItemClass and cItemLibrary properties that contain the class and library for

the objects in the collection. Its AddItem method accepts just the name of the new object as a parameter,

and uses DODEFAULT(This.cItemClass, This.cItemLibrary, tcName) to pass the class, library, and

specified name to its superclass method.

 Note that neither SFCollection nor SFCollectionOneClass will normally be used directly. Instead,

you’ll likely subclass SFCollectionOneClass for a specific collection and fill in the cItemClass and

cItemLibrary methods for the objects this collection will contain. Also, I find it works best to use

collaboration rather than subclassing to add functionality. In other words, don’t create a subclass of

SFCollectionOneClass and add a ton of features to this class. Instead, create a class with the desired

functionality and associate it with an object instantiated from an SFCollectionOneClass subclass. For

example, rather than having a fields collection (a collection of all the fields in the tables of an application)

with all kinds of features, have a field manipulation object that has the features and applies them to its

associated fields collection.

Samples
There are two sets of sample files, one for VFP 5 and one for VFP 6, in the ZIP file available from the

Subscriber Downloads area. FILES.PRG creates a collection of file objects (from the File class in

SAMPLE.VCX), then calls FILES.SCX to display the files in a listbox. Selecting one of the files causes the

oFile property of the form to be set to the selected item in the collection, and several other controls in the

form display properties of the item. The File class has no methods, just properties for the attributes of a file.

You could easily add functionality to this class, such as the ability to change attributes (for example, setting

the lReadOnly property to .T. would cause the file to become read-only), create or delete files, read from or

write to files, copy or move files, etc.

 FIELDS.PRG opens the VFP TESTDATA database and creates a collection of fields in the

CUSTOMER table. The captions of these fields are displayed in a listbox using FIELDS.SCX. Selecting a

caption in the listbox causes the appropriate field name to appear in the textbox on the form.

 These are simple examples, but they are intended to show how SFCollection and

SFCollectionOneClass can be used to create collections of objects. Next time you work on the design of a

tool or application, consider using collections to replace complex arrays or expose the functionality of your

application to the outside world.

Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Saskatchewan, Canada. He is the author of

Stonefield’s add-on tools for FoxPro developers, including Stonefield Database Toolkit and Stonefield Query. He is

also the author of “The Visual FoxPro Data Dictionary” in Pinnacle Publishing’s “The Pros Talk Visual FoxPro”

series. Doug has spoken at the 1997 and 1998 Microsoft FoxPro Developers Conferences (DevCon) as well as user

groups and regional conferences all over North America. He is a Microsoft Most Valuable Professional (MVP).

CompuServe 75156,2326 or dhennig@stonefield.com.

mailto:dhennig@stonefield.com

