
Building Builders with BuilderD
Doug Hennig

BuilderD is a new data-driven builder technology that comes with VFP 6. This month, Doug takes a

look at how BuilderD works and how you can create builders with it in record time.

Over the past several months, we looked at the FoxPro Foundation Classes (FFC) that come with VFP 6.

One of the things I noticed while I was looking at these classes is that they all have custom properties called

Builder and BuilderX, and BuilderX is set to = HOME() + “Wizards\BuilderD,BuilderDForm” in each

class. Digging a little deeper, I found that it’s actually the classes in _BASE.VCX (subclasses of VFP base

classes from which all FFC classes are subclassed) that have these properties added. I knew what these

properties are for (they tell VFP the name of the builder for the class), but why does every class specify the

same builder? Even more interesting, invoking the builder for each class shows a similar builder form but

with different options for each one (Figure 1 shows the builder for the _HyperLinkLabel class, for

example). How the heck does that happen when the same class is being used?

Figure 1. The builder for the _HyperLinkLabel class.

 First a little background. As you’re probably aware, VFP builders can be called a variety of ways, but

the most common is probably by right-clicking on an object and choosing Builder from the context menu.

This causes the program specified in the _BUILDER system variable (which by default contains

BUILDER.APP in the VFP home directory) to be executed. BUILDER.APP checks to see if the selected

object (we’ll call this the “target object”) has a BuilderX property, and if so, runs the program or

instantiates the class specified in that property (if the builder is a class, it should be specified as the class

library, a comma, and the class name). If it doesn’t have a BuilderX property but has a Builder property, the

builder runs the program or instantiates the class specified in that property (we’ll see why there are two

properties to specify the builder later). If neither of these properties exist, it looks in BUILDER.DBF

(located in the WIZARDS subdirectory of the VFP home directory) for the base class of the target object

and runs the builder registered in that table or displays a list of builders if more than one is registered for a

particular class. If no builder can be found for the target object, an message to that effect is displayed.

 OK, so what does all this mean? It means you can specify which builder to use for a particular class in

one of three ways:

 You can change _BUILDER to the name of your builder program. This isn’t a great way to do it,

because you have to change _BUILDER constantly, depending on the selected object.

 You can register your own builders in BUILDER.DBF. One hassle with this approach is that you have

to register the builder with the base class of the target object, so whenever you invoke a builder for any

object of that base class, you’ll get a dialog asking you to select which builder you want, even though

some of them are specific for a certain class rather than the base class.

 You can create custom Builder and BuilderX properties in your classes (even in your base classes as

Microsoft did with _BASE.VCX) and then fill them in with the name of the appropriate builder for

each specific. This is the best approach, because it allows you to easily specify a custom builder for

each class. The reason for having two properties is that BuilderX specifies a custom builder for the

specific class, while Builder is intended for a builder for a set of common classes such as all

comboboxes or grids. As we’ll see later, we can click on a button in the builder specified in the

BuilderX property to bring up the builder specified in the Builder property.

 So we’ve figured out that specifying our builders in Builder and BuilderX properties is the way to go.

But isn’t it a lot of work to create your own builders, especially for classes that may not be used much?

BuilderD
In the December 1997 issue of FoxTalk, Yuanitta Morhart and I looked at the BuilderB technology created

by Ken Levy to make creating builders faster and easier. BuilderB is a set of classes you can subclass to

create your own builders. You add a control to the builder subclass for each property of the target object

you want the builder to maintain. Although BuilderB makes creating builders much easier, it’s kind of a

drag to have to create a new builder subclass for each class you want a builder for. Fortunately for us lazy

types, Ken enhanced BuilderB by making it data-driven. The new technology, called BuilderD (the “D”

stands for “Dynamic”), is available from Ken’s Web site (www.classx.com) and is also included with VFP 6

(BUILDERD.VCX in the WIZARDS subdirectory of the VFP home directory).

 BuilderD consists of several classes, but the main one is BuilderDForm; this is the data-driven builder

form (notice this is the class specified in BuilderX for the classes in _BASE.VCX). As you can see in

Figure 2, this form has textboxes for the class and the name of the target object, buttons that provide

functionality like bringing up the Class Browser and displaying help, and a pageframe with a couple of

pages, but no controls to manage the values of properties. Here’s how this form is populated with the

appropriate controls when it’s instantiated:

 The Init method calls the SetObject method, which calls the AddObjects method (this code is actually

in BuilderBaseForm, the parent class of BuilderDForm).

 The AddObjects method calls the AddObjects method of the oBuilderDB object on the form, which

comes from the BuilderDB class.

 BuilderDB.AddObjects is a complex method, but the basics are that it opens the builder definition table

(by default, BUILDERD.DBF located in the WIZARDS subdirectory of the VFP home directory, but

another table can be specified by changing the cBuilderTable property), finds a record for the class of

the target object, finds all the records linked to that record, and uses information in those records to

create controls on one or more pages of the pageframe. These controls are based on classes in

BUILDERD.VCX, such as BuilderCheckBox and BuilderTextBox, that know how to be bound to

properties of the target object.

Figure 2. BuilderDForm.

 The result of these steps is a builder that can manage one or more properties of the target object. A

specific builder can actually do a lot more than that, such as putting code into methods of the target object

or even the object’s containers, but we’ll take the simple approach for now.

BuilderD Table
Let’s take a closer look at the builder definition table, BUILDERD.DBF, because understanding its

structure is the key to creating your own builders. Table 1 shows the structure of BUILDERD.DBF; in this

table, “property control” means the control in the builder that maintains a specific property of the target

object.

Field Purpose
TYPE Defines the type of record. This contains either “CLASS” if this is a class record or “PROPERTY” if

it’s a property record.
ID The identifier of the record, frequently the name of the class or property the record is for.
LINKS A list of the ID values of other records (separated by carriage returns) linked to this record. This field

is discussed in more detail below.
TEXT The caption for the builder form if this is a “CLASS” record or the caption for the property control if it’s

a “PROPERTY” record.
DESC The status bar text for the property control.
CLASSNAME For a “CLASS” record, the name of the class this builder is for. BuilderDB looks for a record

containing the name of the target object’s class in this field.
For a “PROPERTY” record, the class to instantiate for the property control. If this field is blank, a
default class from BUILDERD.VCX will be used (BuilderCheckBox for logical properties and
BuilderTextBox for all others). Any class you specify should be a subclass of a BuilderD class
because those classes have special properties and methods used by BuilderDForm.

CLASSLIB The class library containing the class specified in CLASSNAME. This property can contain an
expression (such as HOME() + “WIZARDS\BUILDERD.VCX”) rather than a constant; in that case,
put parentheses around the expression. For a “PROPERTY” record, if this field is blank and
CLASSNAME is specified, BUILDERD.VCX is assumed. For a “CLASS” record, BuilderDB looks for
a record containing the same value in this field (after evaluating it if necessary) as the ClassLibrary
property of the target object; leave this blank to create a builder for a class without worrying about
what class library it’s in.

MEMBER Blank for “CLASS” records. For “PROPERTY” records, the name of the target object property
maintained by the property control this record defines. If blank, ID must contain the name of the
property.

HELPFILE The name of the CHM file containing help for this class. If blank, the current help file is used.
HELPID The ID for the help topic.
TOP The Top setting for the property control. If 0, BuilderDForm will place the control below the previous

one (the first control on a page is placed at the value specified in BuilderDB.nTop).
LEFT The Left setting for the property control. If 0, BuilderDForm will place the control near the left edge of

the page it’s on (specified by BuilderDB.nLeft).
HEIGHT The Height setting for the property control. If 0, the default Height for the control is used.
WIDTH The Width setting for the property control. If 0, the default Width for the control is used.
ROWSRCTYPE If the class to use for the property control (specified in CLASSNAME) is a combobox, the

RowSourceType setting for the combobox.
ROWSOURCE If the property control is a combobox, the RowSource setting for the combobox. For example, if

ROWSRCTYPE is 1 (Value), ROWSOURCE will contain a comma-delimited list of values for the
combobox.

STYLE If the property control is a combobox, the Style setting for the combobox.
VALIDEXPR An expression used to validate the value of the property.
READONLY .T. if the property control is read-only.
UPDONCHNG .T. if the property control’s value is written to the target object’s property as it’s changed (that is, from

the InteractiveChange method).
UPDATED The datetime the record was last modified (not used by BuilderD but for information only).
COMMENT Comments about the record (not used by BuilderD but for information only).
USER User information for the record (not used by BuilderD but for information only).

Table 1. The structure of BUILDERD.DBF.

 Tables 2 and 3 show the records that make up a couple of builders, the ones for the FFC

_HyperLinkBase and _HyperLinkLabel classes. I haven’t shown all fields in BUILDERD.DBF because of

space considerations; only those fields pertinent to the discussion are shown.

TYPE ID LINKS CLASSNAME CLASSLIB
CLASS _HyperLinkBase cTarget _HyperLinkBase (HOME()+"FFC_Hyperlink.vcx")
 cFrame
 lNewWindow
CLASS _HyperLinkLabel Caption _HyperLinkLabel (HOME()+"FFC_Hyperlink.vcx")
 _HyperLinkBase

Table 2. The record for the builders for the _HyperLinkBase and _HyperLinkLabel classes.

TYPE ID TEXT CLASSNAME ROWSRCTYPE ROWSOURCE
PROPERTY cTarget Target URL: BuilderComboBox 1 www.microsoft.com/vfoxpro
PROPERTY cFrame Frame:
PROPERTY lNewWindow Open new browser window
PROPERTY Caption Caption

Table 3. Records defining the properties managed by the _HyperLinkBase and _HyperLinkLabel
builders.

 In the record in Table 2 for _HyperLinkBase, we see that CLASSNAME and CLASSLIB specify

which class this is the builder for (notice that CLASSLIB contains an expression that’ll be evaluated at

runtime rather than a hard-coded value), and LINKS lists the records that specify the properties of this class

the builder will manage. The cTarget PROPERTY record shown in Table 3 indicates that this property will

be managed by a BuilderComboBox control with a RowSource containing the former URL of the Microsoft

VFP Web site (it’s now msdn.microsoft.com/vfoxpro). cFrame will be managed by a BuilderTextBox

object (because it’s a character property and the class isn’t defined) and lNewWindow will have a

BuilderCheckBox object (because it’s a logical property).

 Seems simple so far, right? Well, the LINKS field can actually get more complicated. First, if an ID

specified in the LINKS field for a CLASS record doesn’t have a matching record, that ID is assumed to be

the name of a property. Thus, you could actually create a builder in a single record by simply specifying the

properties it manages in the LINKS field of the CLASS record. Of course, you’d have to live with captions

for the properties being the same as the property name, no status bar text, and default classes and sizes for

the properties, but that’s not too bad for a quick and dirty builder. A second complication is that an ID

specified in the LINKS fields for a CLASS can point to another CLASS record rather than to a PROPERTY

record. In that case, this class “inherits” all of the links of the specified class. You can see this in the

_HyperLinkLabel record in Table 2; one of its links is _HyperLinkBase, so not only does the builder for

this class manage the Caption property (specifically listed in its LINKS field), but also the cTarget, cFrame,

and lNewWindow properties because those are specified in the LINKS field for _HyperLinkBase. Thirdly,

a PROPERTY record can be linked to another PROPERTY record. In that case, the record “inherits” all

non-blank fields from the linked record. Finally, LINKS can contain the caption for the page in the builder

pageframe if you specify it as @<caption> (for example, @Properties to use “Properties” as the page

caption).

Creating a Builder
Let’s check it out. Start by creating a subclass of the VFP CheckBox class called TestCheck in TEST.VCX.

Add a custom property called BuilderX to this class and set its value to = HOME() +

“Wizards\BuilderD,BuilderDForm”. Then right-click on the class and choose Builder from the context

menu. Oops, we get a “There are no registered builders of this type” error. That makes sense, since we

haven’t defined one yet (although wouldn’t it be nice if it automatically created one for us—more on this

later). Do the following:

 In the Command window, type USE HOME() + “WIZARDS\BUILDERS”, then BROWSE

 Choose “Append New Record” from the Table menu

 Enter “CLASS” for TYPE, “TestCheck” for ID, “Enabled”, “AutoSize”, and “Caption” (pressing Enter

after each one) for LINKS, “My Test Builder” for TEXT, “TestCheck” for CLASSNAME, and

“TEST.VCX” for CLASSLIB.

 Close the browse window and type USE in the Command window to close the table.

 Right-click on the TestCheck class and choose Builder.

 Cool, huh? Your very own builder, created in just about one minute! Uncheck Enabled and enter a

different Caption, and watch these properties change instantly. Notice that we didn’t bother creating records

for the properties; Enabled and Caption records already existed in BUILDERD.DBF, so we just reused

them, and since no AutoSize record existed, BuilderD just assumed we wanted to manage that property.

 Let’s build another one and see how little we can enter and still get a working builder. Create a subclass

of the VFP TextBox class called TestText in TEST.VCX. Again, add a BuilderX property and set it to =

HOME() + “Wizards\BuilderD,BuilderDForm”. Create a record in BUILDERD.DBF and just specify

TYPE (“CLASS”), ID (“TestText”), LINKS (“ReadOnly”), and CLASSNAME (“TestText”; we can skip

CLASSLIB but CLASSNAME is required). Close the table, then bring up the builder for the class. Voila—

a working builder. Check out the Builder button in the builder; it brings up another builder (one specified in

Builder if that property existed and was filled in, or the default builder for the base class of this class, which

is the VFP Text Box Builder in this case). Thus, even though we can have specific builders for a class, we

can still access more generic builders as well.

Pre-Built Builders
I recently created a couple of builders using BuilderD, one for my SFGrid class and the other for

SFPageFrame. The SFGrid builder maintains the DeleteMark and RecordMark properties (you could easily

add other properties you might frequently change) but since they’re easily changed in the Property Sheet,

they weren’t the real reason I created the builder. The real reason was because I like to use SFGridTextBox

objects (a subclass of SFTextBox with a few properties set differently to improve their appearance in a grid)

in the columns of a grid, and it’s a pain to replace the generic TextBox objects with SFGridTextBox

objects. So I created a button (SFGridTextBoxButton in SFBUILDERS.VCX) that does this automatically.

Here’s the code from the Click method of this button:

local loColumn, ;

 loControl, ;

 lcName

for each loColumn in Thisform.oObject.Columns

 for each loControl in loColumn.Controls

 if upper(loControl.Class) = 'TEXTBOX'

 lcName = loControl.Name

 loColumn.RemoveObject(lcName)

 loColumn.NewObject(lcName, 'SFGridTextBox', ;

 'SFCtrls.vcx')

 endif upper(loControl.Class) = 'TEXTBOX'

 next loControl

next loColumn

wait window 'SFGridTextBox added to each column' ;

 timeout 2

 BuilderDForm has a reference to the target object stored in its oObject property, so any control on the

builder form can reference or change things about the target object. In this code, Thisform.oObject.Columns

references the Columns collection of the grid being affected by the builder.

 One complication: how do I get this button on the builder form? I could create a record for it in the

BUILDERD table, but that would add the button on a page of the pageframe and I’d rather have the button

appear with the other builder buttons. So, I created a “button loader” class (SFBuilderButtonLoader in

SFBUILDERS.VCX) which adds a button to the builder form and then returns .F. so it doesn’t actually get

instantiated. SFBuilderButtonLoader looks in the USER memo field of the current record in the

BUILDERD table (the record that caused the class to be instantiated) for the class name and library of the

button to add to the form (note in the code below that BUILDERD is open with the alias “BUILDER”). For

SFGridTextBoxButton, for example, I created a record in the BUILDERD table with

“SFGridTextBoxButton” as the ID but “SFBuilderButtonLoader” as the class, and entered “SFBuilders,

SFGridTextBoxButton” in the USER memo. This tells SFBuilderButtonLoader to add an

SFGridTextBoxButton to the form. Here’s the code from the Init method of SFBuilderButtonLoader:

local lcClass, ;

 lnPos, ;

 lcLibrary, ;

 lnTop, ;

 lnLeft, ;

 loControl

* If the BUILDERD table is open and positioned to the

* record for the button to be loaded (which it should

* be), we'll add the button by getting the class and

* library for the button from the USER memo.

if used('BUILDER') and ;

 lower(BUILDER.CLASSNAME) = lower(This.Class)

 with Thisform

 lcClass = BUILDER.USER

 lnPos = at(',', lcClass)

 if lnPos > 0

 lcLibrary = left(lcClass, lnPos - 1)

 lcClass = substr(lcClass, lnPos + 1)

 else

 lcLibrary = ''

 endif lnPos > 0

* Add the button. If we succeeded, find the first open

* "slot" in the button area on the form.

 .NewObject(lcClass, lcClass, lcLibrary)

 if type('.' + lcClass + '.Name') = 'C'

 lnTop = .cmdClassBrowser.Top + ;

 .cmdClassBrowser.Height + 5

 lnLeft = .cmdClassBrowser.Left

 for each loControl in .Controls

 if loControl.Left = lnLeft and ;

 loControl.Top = lnTop

 lnLeft = lnLeft + ;

 .cmdClassBrowser.Width + 6

 if lnLeft + .cmdClassBrowser.Width > .Width

 lnLeft = .cmdClassBrowser.Left

 lnTop = lnTop + .cmdClassBrowser.Height + 5

 endif lnLeft + .cmdClassBrowser.Width > .Width

 endif loControl.Left = lnLeft ...

 next loControl

* Set the button position to the located slot and make

* it visible.

 with .&lcClass

 .Top = lnTop

 .Left = lnLeft

 .Visible = .T.

 endwith

 endif type('.' + lcClass + '.Name') = 'C'

 endwith

endif used('BUILDER') ...

return .F.

 The SFGrid record in the BUILDERD table has DeleteMark, RecordMark, and SFGridTextBox in its

LINKS column, so this builder gets these controls. I can now bring up my BuilderD builder for any SFGrid

object, use the VFP Grid Builder (by clicking on the Builder button in the BuilderD form) to quickly create

the columns in the grid, and then change those columns to use SFGridTextBox objects by clicking on my

Add SFGridTextBox button.

 For SFPageFrame, I wanted a similar function: a button that adds code to the RightClick method of

each page in the pageframe; this allows right-clicking on a page to provide a context menu for the

pageframe or (more likely) entire form. As with the SFGrid builder, I created a record in the BuilderD table

that instantiates an SFBuilderButtonLoader object that then adds an SFCodePageButton object to the

builder form. Here’s the code from the Click method of SFCodePageButton that adds the desired code to

each page:

local lcCode, ;

 loPage, ;

 lcCurrentCode

lcCode = 'This.Parent.ShowMenu()' + chr(13)

for each loPage in Thisform.oObject.Pages

 lcCurrentCode = loPage.ReadMethod('RightClick')

 if not lcCode $ lcCurrentCode

 loPage.WriteMethod('RightClick', lcCurrentCode + ;

 iif(empty(lcCurrentCode), '', chr(13)) + lcCode)

 endif not lcCode $ lcCurrentCode

next loPage

wait window 'Code added to each page' timeout 2

 To add these new builders to your system, copy SFBUILDERS.VCX and VCT (found with the

download files for this month’s article) to the WIZARDS subdirectory of the VFP directory or some other

directory in your VFP path. Then open the BUILDERD table and APPEND FROM the NEWBUILDERS

table, add Builder and BuilderX properties to your classes, and enter = HOME() +

“Wizards\BuilderD,BuilderDForm” into BuilderX.

But Wait, It Gets Better
As easy as it is to create a builder using BuilderD, a phrase I’ve heard FoxPro guru Andy Griebel use

occurs to me: “It’s too hard”. Wouldn’t it be wonderful if there was a visual front-end to BUILDERD.DBF,

along the same lines as the forms we provide to our users? After all, we don’t just give them a browse

window and tell them to start entering data (yeah, I know we’re developers and don’t need no stinkin’

forms, but follow me on this). What I’m talking about is something that builds builders; yes folks, a builder

builder. In fact, let’s use BuilderD itself to build the builder builder (does that make it a builder builder

builder?). That’s what we’ll do next month. Until then, have fun with BuilderD.

Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Saskatchewan, Canada. He is the author of

Stonefield’s add-on tools for FoxPro developers, including Stonefield Database Toolkit and Stonefield Query. He is

also the author of “The Visual FoxPro Data Dictionary” in Pinnacle Publishing’s “The Pros Talk Visual FoxPro”

series. Doug has spoken at the 1997 and 1998 Microsoft FoxPro Developers Conferences (DevCon) as well as user

groups and regional conferences all over North America. He is a Microsoft Most Valuable Professional (MVP). He

can be reached at dhennig@stonefield.com.

mailto:dhennig@stonefield.com

