
Zip it, Zip it Good 
Doug Hennig 

 
This month’s article presents a class to zip and pack the files in a project, and a class to interface 

VFP with a zipping utility like WinZip. Combining these classes with a ProjectHook and a project 

toolbar helps improve your productivity. 

 

In my column in the September 1998 issue of FoxTalk (“The Happy Project Hooker”, a article for which I 

received way more comments about the title than the article itself <g>), I discussed the ProjectHook class, a 

welcome addition to VFP 6 that makes it easier to build project-related tools for developers. I also 

presented several ProjectHook classes that provided functionality like build buttons in a toolbar, text 

searching, and restoring project-specific settings like Intellidrop classes and form templates. I mused that 

other features would be useful, like packing the table-based source files (SCX, VCX, FRX, and MNX) in a 

project or creating a zip file for archive or transportation purposes. Since I’ve actually built these functions, 

it’s time to present these as reusable developer tools. 

 As a refresher, SFPROJ.VCX contains several ProjectHook classes. SFProjectHook is the base 

ProjectHook class; it contains core functionality like chaining to hooked ProjectHook (or other) objects and 

implementing a toolbar if desired. SFProjectHookFind is a subclass that implements text search capabilities; 

it collaborates with SFFindText, a form that displays where the specified text was found. 

SFProjectHookRegistry saves and restores project-specific settings, making it easy to switch between 

projects. SFProjectToolbar, SFProjectToolbarTimer, and several SFToolbarButton classes provide a 

toolbar that works with a ProjectHook object and automatically releases itself when the project is closed. 

 

SFProjectUtils 
Rather than creating another ProjectHook subclass for project packing and zipping, I decided to create a 

project utilities class (SFProjectUtils) based on Custom instead. Although this class is in SFPROJ.VCX like 

the ProjectHook classes, I wanted this class to be used for projects that aren’t necessarily open in the 

Project Manager, so I didn’t need the functionality of a ProjectHook. The reason I based it on Custom 

rather than SFCustom (our Custom base class in SFCTRLS.VCX) is that having SFCTRLS.VCX open 

(which happens when you instantiate a subclass of one of its classes, even when that subclass is in a 

different VCX) when trying to pack or zip a project that includes this file causes problems. Just because it 

isn’t based on ProjectHook doesn’t mean it can’t be used from within a ProjectHook; that’s in fact what 

we’ll do later in this article. 

 SFProjectUtils has two main methods, and several supporting methods. The main methods are 

ZipProject, which creates a zip file of the files in a project, and PackProject, which packs the table-based 

source files in a project. The supporting methods, which we won’t look at due to space limitations, are 

GetFilesFromProject, which fills an array with the files in a project, GetDateTime, which combines the date 

and time values from an array filled with ADIR() into a DateTime value, and GetAssociatedFile, which 

returns the name of a file associated with the specified file (for example, passing TEST.SCX to 

GetAssociatedFile will return TEST.SCT). SFProjectUtils has several properties, the two important ones 

being cProject, which contains the name of the project file we’re working with, and oZip, which contains a 

reference to an object that’ll actually perform the zipping work for us. 

 Let’s look at PackProject first, since it’s the simpler of the two main methods. I like to use this method 

before I build an EXE or archive a project because, as you probably know, the memo file of table-based 

source code files (such as VCTs) can get huge with discarded data as you make changes to it. Although the 

Project Manager will compact these files when you build with the “Recompile All Files” option chosen, I 

don’t use that option often. As a result, the EXE or archive can be bloated with garbage. PackProject 

provides a fast way to trim the files down to size. 

 The major code in this method gets a list of files in the project, opens those that are table-based (the file 

type is K [screen], V [VCX], R [report], B [label], or M [menu]) exclusively, and packs them. 

 
lnFiles  = This.GetFilesFromProject(@laFiles, lcProject) 

for lnI = 1 to lnFiles 

  if laFiles[lnI, 2] $ 'KVRBM' 



    lcName = laFiles[lnI, 1] 

    if file(lcName) 

      wait window 'Processing ' + lcName + ' ...' nowait 

      use (lcName) exclusive 

      pack 

      use 

    endif file(lcName) 

  endif laFiles[lnI, 2] $ 'KVRBM' 

next lnI 

wait clear 

 

 PACKPROJ.PRG is a simple utility program you can call to pack the files in a project. Pass it the name 

of the project to pack and it’ll let SFProjectUtils take care of the work. 

 The ZipProject method zips the files in a project. I use it both to archive the project once it’s completed 

and for transportation purposes (taking a copy of the files home or giving them to another developer). 

ZipProject accepts two parameters: the name of the zip file to create and, because you may not want to zip 

all the files in a project, an expression to filter the files to zip. We’ll look at how the filter expression is used 

in a moment. We won’t examine all the code in this method, just the important stuff. First, we get a list of 

files in the project, the directory the project is in, and the name of the APP or EXE file created from the 

project (if it exists). 
 

with This 

  lcProject = .cProject 

  if empty(lcProject) 

    return .F. 

  endif empty(lcProject) 

 

* Get a list of files in the project. 

 

  lnFiles = .GetFilesFromProject(@laFiles, lcProject) 

 

* Get the directory and name of the APP file. 

 

  lcDirectory = addbs(justpath(lcProject)) 

  lcAppFile   = forceext(lcProject, 'APP') 

  if not file(lcAppFile) 

    lcAppFile = forceext(lcProject, 'EXE') 

  endif not file(lcAppFile) 

 

 Next, we put information about the project file into an object and pass that object to the 

ShouldFileBeZipped method, which returns .T. if the filter expression is either empty (meaning there is no 

filter) or evaluates to .T. If it does, the AddFile method of the oZip object adds the PJX and PJT files to the 

list of files to zip. If the APP or EXE file created from the project exists, it’s treated the same way. 
 

  adir(laDir, lcProject) 

  loFile.cFileName   = lcProject 

  loFile.cType       = 'p' 

  loFile.nFileSize   = laDir[2] 

  loFile.tModified   = .GetDateTime(laDir[3], laDir[4]) 

  loFile.cAttributes = laDir[5] 

  if .ShouldFileBeZipped(loFile, tcFilterExpr) 

    .oZip.AddFile(lcProject) 

    .oZip.AddFile(forceext(lcProject, 'PJT')) 

  endif .ShouldFileBeZipped(lcProject, ... 

  if file(lcAppFile) 

    adir(laDir, lcAppFile) 

    loFile.cFileName   = lcAppFile 

    loFile.cType       = '' 

    loFile.nFileSize   = laDir[2] 

    loFile.tModified   = .GetDateTime(laDir[3], laDir[4]) 

    loFile.cAttributes = laDir[5] 

    if .ShouldFileBeZipped(loFile, tcFilterExpr) 

      .oZip.AddFile(lcAppFile) 

    endif .ShouldFileBeZipped(loFile, tcFilterExpr) 

  endif file(lcAppFile) 

 



 Each of the files in the project is also added to the list of files to zip if it passes the filter criteria. 

Because a file may have one or two associated files (for example, DCX and DCT files accompany a DBC 

file), the GetAssociatedFile method is called to ensure all necessary files are included. 
 

  for lnI = 1 to lnFiles 

    lcFile               = laFiles[lnI, 1] 

    lcType               = laFiles[lnI, 2] 

    loFile.cFileName     = lcFile 

    loFile.cType         = lcType 

    loFile.nFileSize     = laFiles[lnI, 3] 

    loFile.tModified     = laFiles[lnI, 4] 

    loFile.cAttributes   = laFiles[lnI, 5] 

    if .ShouldFileBeZipped(loFile, tcFilterExpr) 

      .oZip.AddFile(lcFile) 

      for lnJ = 1 to 2 

        lcFile = .GetAssociatedFile(lcFile, lcType, lnJ) 

        if not empty(lcFile) 

          .oZip.AddFile(lcFile) 

        endif not empty(lcFile) 

      next lnJ 

    endif .ShouldFileBeZipped(lcFile, ... 

  next lnI 

 

 Finally, if any of the files passed the filter criteria, we close the project file if necessary (we can’t zip it 

if it’s open in the Project Manager), have the oZip object do the zipping work, and reopen the project if we 

closed it. 
 

  if .oZip.nFiles > 0 

    loProject = iif(type('_vfp.Projects[lcProject].' + ; 

      'Name') = 'C', _vfp.Projects[lcProject], .NULL.) 

    llOpen = vartype(loProject) = 'O' 

    if llOpen 

      loProject.Close() 

    endif llOpen 

    llReturn = .oZip.ZipFiles(tcZipFile) 

    if llOpen 

      modify project (lcProject) nowait 

    endif llOpen 

  endif .oZip.nFiles > 0 

endwith 

return llReturn 

 

 Before we look at the zipping object, let’s take a look at an example of how ZipProject might be called. 

I like to create two zip files for each project. One, called SOURCE, contains the project file, APP or EXE, 

and all the project-specific source code. The other, called LIBRARY, contains the library (or non-project-

specific) source code used in the project. The reason for zipping LIBRARY is that sometimes you may need 

to restore an old project to do maintenance work on it but you’ve since updated the library files it uses to a 

later version. Rather than trying to figure out what changes in the library files will cause havoc in your old 

project, it’s easier to just use the snapshot of the library files as they were when the project was archived. 

 ZIPPROJ.PRG (included with this month’s Subscriber downloads) accomplishes this goal. Pass it the 

name of the project to zip and it’ll create SOURCE.ZIP and LIBRARY.ZIP. The interesting part of this 

program is the following code (loProject is a reference to the SFProjectUtil object and lcProject contains 

the name of project to process): 

 
pcDirectory = addbs(justpath(lcProject)) 

loProject.ZipProject(pcDirectory + 'source.zip',  ; 

  'ZipSourceFile(toFile)') 

loProject.ZipProject(pcDirectory + 'library.zip', ; 

  'ZipLibraryFile(toFile)') 

 

 Notice that for the filter expressions, this code passes function names. These functions are located in 

ZIPPROJ.PRG, which means that the SFProjectUtil object in effect calls back to ZIPPROJ to figure out 

which files should be zipped. The ZipSourceFile function will allow the project file (toFile.cType = “p”), 

application file (toFile.cType is blank), or any file in the project directory or a subdirectory of it to be 



zipped, while ZipLibraryFile will only allow files that aren’t in the project directory or a subdirectory of it 

to be zipped: 
 

function ZipSourceFile 

lparameters toFile 

return toFile.cType = 'p' or empty(toFile.cType) or ; 

 addbs(justpath(toFile.cFileName)) = pcDirectory 

 

function ZipLibraryFile 

lparameters toFile 

return addbs(justpath(toFile.cFileName)) <> pcDirectory 

 

 What if you don’t want this functionality? Easy: change the filter conditions. Mike Yearwood (who I 

owe thanks to, both for the following code and for helping make the classes in this article better) wanted a 

single zip file containing only files changed since the last time the project was zipped so he could send just 

those files to someone else. MIKEZIPPER.PRG uses a table that contains the date and time the project was 

last zipped (which is placed into the ptLastTimeZipWasMade variable), and uses this as the filter function: 

 
function ZipSourceFile 

lparameters toFile 

return toFile.tModified > ptLastTimeZipWasMade 

 

SFZipUtils and SFZipUtilsWinZip 
Now let’s look at the classes that handle the zipping process for us. Because the exact process of how to zip 

files depends on what tool you use (several tools are available, including WinZip, PKZip, DynaZip, and 

several free or shareware utilities), I created an abstract class called SFZipUtils (based on Custom rather 

than SFCustom for the same reason I outlined earlier) that has the framework for a zipping class and leaves 

the implementation to a subclass. 

 SFZipUtils has an AddFile method that adds a filename to the protected aFiles array. Call this method, 

passing it the name and path of the file, for each file to be zipped. The nFiles property contains the number 

of files to be zipped; it has an assign method that makes it read-only and an access method that calculates 

the value for the property. The Clear method simply clears the aFiles array; call this method after zipping 

some files when you want to zip a different set of files. The cZipFile property contains the name of the zip 

file to create; it has an assign method to ensure a valid filename is entered. The lUseRelativePaths property 

indicates whether relative paths should be used in the zip file; set it to .F. to use absolute paths. 

 The ZipFiles method uses a Template design pattern to create the zip file. It doesn’t do a lot of work 

itself; rather, it directs other methods to do the work. The following is a stripped down version of the code 

for space reasons (see the source code for the complete version): 

 
lparameters tcZipFile 

with This 

 

* Hook method before the list of files to zip has been 

* created. 

 

  .BeforeAddFilesToZip() 

 

* Add each file to the zip file. 

 

  lnFiles = .nFiles 

  for lnI = 1 to lnFiles 

    lcFile = .aFiles[lnI] 

    if .lUseRelativePaths 

      lcFile = sys(2014, lcFile, lcZipFile) 

    endif .lUseRelativePaths 

    .AddFileToZip(lcFile) 

  next lnI 

 

* Hook method after the list of files to zip has been 

* created. 

 

  .AfterAddFilesToZip() 

 



* Hook method before the zip file has been created. 

 

  .BeforeCreateZipFile() 

 

* Ensure we're in the directory where the zip file 

* should be created (it works better if we're using 

* relative file paths) and zip the files. 

 

  lcCurDir = sys(5) + curdir() 

  cd (justpath(lcZipFile)) 

  llReturn = .CreateZipFile(lcZipFile) 

  cd (lcCurDir) 

 

* Hook method after the zip file has been created. 

 

  .AfterCreateZipFile() 

endwith 

return llReturn 

 

 The BeforeAddFilesToZip, AfterAddFilesToZip, BeforeCreateZipFile, and AfterCreateZipFile 

methods called from ZipFiles are hook methods; they don’t have any code in this class, but can be used to 

place additional code at the appropriate place in the process in a subclass. AddFileToZip and CreateZipFile 

are also empty in this class, but they’re not hook methods; they’re abstract methods that must be coded in a 

subclass to provide the behavior for the zipping mechanism used. 

 Since I have WinZip (from Nico Mak Computing Inc, www.winzip.com), I created a subclass of 

SFZipUtils called SFZipUtilsWinZip that uses WinZip to create the zip file. This subclass creates a file 

containing the list of files to be zipped (the name of this file is passed to WinZip as we’ll see later), so the 

BeforeAddFilesToZip and AfterAddFilesToZip methods were overridden to create and close a textmerge 

file, respectively. AddFileToZip was overridden to output the name of the specified file to the textmerge 

file: 

 
lparameters tcFile 

\\<<tcFile + chr(13) + chr(10)>> 

 

 The CreateZipFile method, which actually creates the zip file, calls WINZIP.EXE (the actual name and 

path to the program are stored in the cZipProgram property) to do the work. WinZip is passed the following 

parameters: “-min” to run minimized, “-a” to add files, “-p” to save directory information (rather than just 

the filename itself), the name of the zip file, and “@<filename>”, where <filename> is the name of the 

textmerge file (stored in the cZipList property) containing the list of files to zip. Initially, I had this code 

call WINZIP.EXE using the VFP RUN command. However, the problem with this is that RUN returns 

immediately even though WinZip hasn’t finished executing. I wanted to wait until it was done to be sure the 

zip file was created, so I used a great public domain class called Process (included in this month’s 

Subscriber downloads), written by Ed Rauh of eSolutions Services, LLC. Set the icCommandLine property 

of this class to the command line to execute and the icWindowMode property to the mode for the 

application (“HID” means hidden; see the Process class for other choices), then call the 

LaunchAppAndWait method to execute the application and wait until it terminates before continuing. The 

Init method of SFZipUtilsWinZip instantiates Process into the oProcess property. OK, now that this 

description took way more space than the actual code for CreateZipFile <g>, here’s the code: 

 
lparameters tcZipFile 

with This 

  .oProcess.icCommandLine = .cZipProgram + ; 

    ' -min -a -p ' + tcZipFile + ' @' + .cZipList 

  .oProcess.icWindowMode  = 'HID' 

  .oProcess.LaunchAppAndWait() 

endwith 

 

 Before using SFZipUtilsWinZip, don’t forget to set the cZipProgram property to the path to 

WINZIP.EXE on your system. 

 

Adding to a ProjectHook 



To make it easier to access the methods in SFProjectUtils, I created a subclass of SFProjectHookFind (I 

used this class because I also want text search capability) called MyProjectHook (in SFPROJECT.VCX) 

that instantiates SFProjectUtils into its oUtils property and has PackProject and ZipFiles methods that call 

oUtils.PackProject and oUtils.ZipProject, respectively. It also has ZipSourceFile and ZipLibraryFile 

methods with the same code as the functions in ZIPPROJ.PRG so file filtering creates the desired zip files. I 

created a subclass of SFProjectToolbar called MyProjectToolbar (also in SFPROJECT.VCX) that has 

buttons for building an APP or EXE, checkboxes for various build options, and buttons to perform a text 

search or zip or pack the project (see Figure 1). These buttons call the appropriate methods in 

MyProjectHook, which instantiates MyProjectToolbar because its cToolbarClass property contains 

“MyProjectToolbar”. 

 

Figure 1. MyProjectToolbar provides fast access to project functions. 

 
 

Conclusion 
Project utilities like those I presented in my September 1998 article and this article make working with 

project files a lot easier. I use these utilities all the time, and hope you find them as useful as I do. 

 
Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Saskatchewan, Canada. He is the author or 

co-author of Stonefield’s add-on tools for FoxPro developers, including Stonefield Database Toolkit, Stonefield 

Query, and Stonefield Reports. He is also the author of “The Visual FoxPro Data Dictionary” in Pinnacle 

Publishing’s “The Pros Talk Visual FoxPro” series. Doug has spoken at the 1997, 1998, and 1999 Microsoft FoxPro 

Developers Conferences (DevCon) as well as user groups and regional conferences all over North America. He is a 

Microsoft Most Valuable Professional (MVP) and Microsoft Certified Professional (MCP). He can be reached at 

dhennig@stonefield.com. 

mailto:dhennig@stonefield.com

