
Unit Testing VFP Applications

Doug Hennig
Stonefield Software Inc.

Email: dhennig@stonefield.com
Corporate Web site: www.stonefieldquery.com

Personal Web site : www.DougHennig.com
Blog: DougHennig.BlogSpot.com

Twitter: DougHennig

Unit testing is a very important part of application development and yet it seems that few VFP
developers use this important technique. Unit testing allows you to confirm that code has the
functionality expected of it, and is especially important when refactoring or making other
changes to your code. This session introduces you to unit testing and the VFX FoxUnit project
so you can be confident in your application's success before you deploy it.

mailto:dhennig@stonefield.com
http://www.stonefieldquery.com/
http://www.doughennig.com/
http://doughennig.blogspot.com/
http://www.twitter.com/DougHennig

Introduction
Unit testing seems to be a technique that isn’t well known in the Visual FoxPro community.
That may be partly because there are few tools available to assist with unit testing and
partly because only a handful of presentations have been done and articles have been
written on the topic. Hopefully after reading this document, you’ll be inspired to start using
unit testing as part of your development methodology.

Why unit testing is important
Have you ever had this happen?

 The customer asks for a change in the functionality of an existing application.

 You start sweating a bit because the code for that feature is pretty complex and you
haven’t looked at it in years (or it was written by another, long-departed developer).
You’re worried that modifying the code could break something.

 You update the code and test it informally. Everything seems to be working.

 You start sweating again as it comes time to deploy the updated application at the
customer’s site.

 You cross your fingers and close your eyes as the customer does a “smoke test,” so-
called from hardware engineers who plug something in and see if it smokes.

I’ve been through that scenario a hundred times. If you could learn a technique that would
prevent the fear of changing existing code, wouldn’t that be worth your time?

Unit testing is such a technique. Once you’ve built a stable of unit tests for an application,
you can make a change and then run the tests to see if you broke anything. If the tests are
complete enough—that is, covering as much of the code base as possible—your confidence
in the code changes should be very high and you can minimize the fear of deploying to your
customer.

Unit testing is useful for:

 Ensuring the code matches the specifications. If unit tests are written so they test
that the code does all the things it’s supposed to do, those tests will fail if the code
isn’t complete or missed doing some of what’s expected.

 Finding bugs. Wouldn’t you rather find a bug before you ship to your customer than
have your customer find it? Since unit tests can hit every line of code and cover
every possible scenario, they should uncover bugs at development time long before
the customer sees the application.

 Adding or changing functionality. As I outlined in the scenario above, if you have a
set of tests that cover the existing functionality of the code, you can run those tests
to see if you broke anything after making changes. Of course, it’s likely you’ll have to
add new tests or modify existing ones since the behavior of the application changed,

but those tests ensure the application continues to work as expected and become
part of the existing set of tests for future use.

 Refactoring code. Sometimes, you realize that while the code works, there are
performance issues, it could be more flexible (useful for future changes in
functionality), or it just doesn’t “smell” right (the design has problems). Changes you
make to improve the performance, increase flexibility, or implement a better design
don’t change the functionality of the code, so you can run the existing unit tests as
you make changes to ensure you aren’t introducing bugs or changing the behavior
from the specifications.

 Encouraging a better interface. A lot of times, the design for a class’ interface seems
reasonable until you actually start writing client code that uses the class. Often, I
find little things like too many parameters or an awkward syntax for a method when
I do that. When you write tests, you’re essentially writing client code for the class,
and typically sooner than you would “real” code. Many times I’ve tweaked my design
after writing some tests and finding that I can improve how the class is used.

 Bringing new developers up to speed. Complex code can be difficult to follow but
unit tests (at least good ones) are usually very simple. Sometimes it’s easier to
understand what a block of code is supposed to do by examining the tests to see
what the expected behavior of the code is under differing circumstances.

Given all of these benefits, once you start doing unit testing, you’ll wonder how you ever
wrote code without it!

If you think about, you probably have already written some unit tests. You write a class,
then you write a small PRG to instantiate that class and see if it works. The problem with
that approach is that it isn’t methodical and likely only covers a small part of the
application.

Let’s start looking at unit testing by discussing the principles of good unit testing.

Principles of good unit testing
In The Art of Unit Testing, Roy Osherove defines a unit test:

A unit test is an automated piece of code that invokes the method or class being
tested and then checks some assumptions about the logical behavior of that method
or class. A unit test is almost always written using a unit-testing framework. It can
be written easily and runs quickly. It’s fully automated, trustworthy, readable, and
maintainable.

He lists these properties of a good unit test:

 Automated and repeatable. You should be able to run a unit test without manually
doing a bunch of setup, and the unit test should give the same results under the
same conditions.

 Easy to implement. If a test is hard or takes more than a few minutes to write, it
probably is trying to do too much. Also, you’re much less likely to write unit tests if
you perceive writing the tests as hard or time-consuming.

 Available for future use. Once a test is written, it should be available to be used over
and over, not just as a one-shot deal.

 Anyone can run it. If another developer has a copy of the source code, they should be
able to run the unit test without needing other components installed only on your
system.

 Runs quickly. If the unit test takes too long to run, again it’s likely trying to do too
much. Also, tests that take too long to run will likely be avoided by busy developers
who “don’t have the time.”

Our first tests
Let’s create a simple class to process log files. It doesn’t do much right now, just ensuring a
valid filename is specified, but we want to make sure it does what it’s supposed to. The
class is shown in Listing 1 (LogFileProcessor.PRG included with the sample files for this
document).

Listing 1. A simple class we'll write tests for.

define class LogFileProcessor as Custom
 cErrorMessage = ''

 function IsValidFile(tcFileName)
 local llReturn
 do case
 case vartype(tcFileName) <> 'C' or empty(tcFileName)
 This.cErrorMessage = 'Invalid filename'
 llReturn = .F.
 case lower(justext(tcFileName)) <> 'log'
 This.cErrorMessage = 'Not a log file'
 llReturn = .F.
 case not file(tcFileName)
 This.cErrorMessage = 'File does not exist'
 llReturn = .F.
 otherwise
 llReturn = .T.
 endcase
 return llReturn
 endfunc
enddefine

Listing 2 (taken from LogFileProcessorTest.PRG) shows a set of tests for the IsValidFile
method of LogFileProcessor. All of these tests pass.

Listing 2. Tests for the LogFileProcessor class.

* Instantiate the class.

loClass = newobject('LogFileProcessor', 'LogFileProcessor.prg')

* Test that IsValidFile handles no filename.

llResult = loClass.IsValidFile()
if llResult or loClass.cErrorMessage <> 'Invalid filename'
 messagebox('First test failed')
 return
endif
llResult = loClass.IsValidFile('')
if llResult or loClass.cErrorMessage <> 'Invalid filename'
 messagebox('Second test failed')
 return
endif

* Test that IsValidFile handles an invalid extension.

llResult = loClass.IsValidFile('x.txt')
if llResult or loClass.cErrorMessage <> 'Not a log file'
 messagebox('Third test failed')
 return
endif

* Test that IsValidFile handles a non-existent file.

llResult = loClass.IsValidFile('x.log')
if llResult or loClass.cErrorMessage <> 'File does not exist'
 messagebox('Fourth test failed')
 return
endif

* Test that IsValidFile works.

strtofile('', 'x.log')
llResult = loClass.IsValidFile('x.log')
if not llResult
 messagebox('Fifth test failed')
 return
endif
erase x.log
messagebox('All tests passed')

Now suppose a new requirement is added: the file cannot be empty. Here’s a new CASE
statement added to the code:

case empty(filetostr(tcFileName))
 This.cErrorMessage = 'File is empty'
 llReturn = .F.

Now the last test fails. We should modify that test to expect it to fail and add another test
that passes by having some content in the file. Here are the updated tests:

* Test that IsValidFile handles an empty file.

strtofile('', 'x.log')
llResult = loClass.IsValidFile('x.log')
if llResult or loClass.cErrorMessage <> 'File is empty'
 messagebox('Fifth test failed')
 return
endif

* Test that IsValidFile works.

strtofile('some text', 'x.log')
llResult = loClass.IsValidFile('x.log')
if not llResult
 messagebox('Sixth test failed')
 return
endif

Note the good things about these tests:

 They completely test the functionality of the IsValidFile method.

 Each test is small, simple, and tests only one thing.

However, note the weaknesses of these tests:

 They use MESSAGEBOX() to display success or failure. That means the tests can’t be
automated because someone has to be there to respond to the dialogs.

 They use hard-coded strings to test the error messages. If you change the messages
in IsValidFile, the tests break even though they correctly test the functionality of the
method. However, the only way around that is to rewrite the class to use an error
code or look up the string to use for a particular error somewhere, such as a table,
and have the tests do the same.

 The code is in one long program without a clear distinction (other than comments)
between tests. It isn’t possible to run only some tests.

Better unit tests
Let’s rewrite our tests to more closely conform to Roy’s definition of a unit test; see Listing
3, taken from BetterLogFileProcessorTest.PRG. The improvements in this code are that
each test is now independent and results are logged to a table rather than being displayed
in dialogs. The main routine still runs all the tests but that’s a minor issue. Now, if we have
a collection of such test programs, a master test program could run them all and then
analyze the TestResults table.

Listing 3. Our rewritten tests can be automated.

* Create a table to hold test results if necessary.

do case
 case used('TestResults')
 case file('TestResults.dbf')

 use TestResults in 0
 otherwise
 create table TestResults free (Test C(90), When T, Result L)
endcase

* Run the tests.

do Test1
do Test2
do Test3
do Test4
do Test5

* Display the results.

browse

* Helper method to log test results.

function LogResult(tcTest, tlResult)
insert into TestResults values (tcTest, datetime(), tlResult)

* Test that IsValidFile handles no filename.

function Test1
loClass = newobject('LogFileProcessor', 'LogFileProcessor.prg')
llResult = not loClass.IsValidFile()
LogResult('IsValidFile handles no filename (no parameter)', llResult)
llResult = not loClass.IsValidFile('')
LogResult('IsValidFile handles no filename (empty parameter)', llResult)

* Test that IsValidFile handles an invalid extension.

function Test2
loClass = newobject('LogFileProcessor', 'LogFileProcessor.prg')
llResult = not loClass.IsValidFile('x.txt')
LogResult('IsValidFile handles an invalid extension', llResult)

* Test that IsValidFile handles a non-existent file.

function Test3
loClass = newobject('LogFileProcessor', 'LogFileProcessor.prg')
llResult = not loClass.IsValidFile('x.log')
LogResult('IsValidFile handles a non-existent file', llResult)

* Test that IsValidFile works.

function Test4
strtofile('some text', 'x.log')
loClass = newobject('LogFileProcessor', 'LogFileProcessor.prg')
llResult = loClass.IsValidFile('x.log')
LogResult('IsValidFile works when all requirement met', llResult)
erase x.log

* Test that IsValidFile handles an empty file.

function Test5
strtofile('', 'x.log')
loClass = newobject('LogFileProcessor', 'LogFileProcessor.prg')
llResult = not loClass.IsValidFile('x.log')
LogResult('IsValidFile handles an empty file', llResult)
erase x.log

Our tests still have a few weaknesses:

 Their names aren’t very useful: they don’t describe what each test is testing for.

 We have to modify the program to run tests individually.

 In this case, LogFileProcessor’s Init method doesn’t accept any parameters, so it’s no
big deal to instantiate the class in each function. However, if the class is changed to
accept one or more parameters (such as the filename), each function has to be
changed, duplicating code.

 We’ve built some infrastructure here (creating/opening the TestResults table and
logging the results) that has to be reproduced in every test program.

Let’s look at some solutions to these issues.

Naming tests
Tests should be named to tell you what they test. Here are the general rules of thumb I use:

 The name of the test program is ClassNameTest, where ClassName is the name of the
class or program being tested. All of the tests for the class or program go into that
test program so they’re all in one place.

 The name of each test function is MethodName_Scenario_ExpectedBehavior, where
MethodName is the name of the method being tested, Scenario is what behavior is
being tested, and ExpectedBehavior is what we expect to happen. Here are some
reasonable names for the tests in Listing 3: IsValidFile_NoFileName_ReturnsFalse,
IsValidFile_InvalidExtension_ReturnsFalse, IsValidFile_NonExistentFile_
ReturnsFalse, IsValidFile_EmptyFile_ReturnsFalse, and IsValidFile_ValidFile_
ReturnsTrue.

Layout of a unit test
For consistency, the code in a unit test should do its tasks in this order:

 Arrange: set things up that the test requires.

 Act: invoke the method to be tested.

 Assert: test the results.

For example, Test4 in Listing 3 uses this AAA style (Figure 1).

Figure 1. Test4 shows the Arrange, Act, Assert (AAA) style of unit tests.

Although instantiating the class under test in each test function is fine, you may wish to
refactor that out to a common helper method. That way, any arrange tasks common to all
tests can be put in one place and if additional tasks are required because of changes to the
class being tested, such as passing a parameter to Init or calling a Setup method, you only
have to make those changes in one place.

Listing 4 (EvenBetterLogFileProcessorTest.PRG) has better names for the tests and
refactors instantiation of the class under test to a helper method.

Listing 4. Our improved tests have better names and refactor class instantiation to a helper method.

* Create a table to hold test results if necessary.

do case
 case used('TestResults')
 case file('TestResults.dbf')
 use TestResults in 0
 otherwise
 create table TestResults free (Test C(90), When T, Result L)
endcase

* Run the tests.

do IsValidFile_NoFileName_ReturnsFalse
do IsValidFile_InvalidExtension_ReturnsFalse
do IsValidFile_NonExistentFile_ReturnsFalse
do IsValidFile_EmptyFile_ReturnsFalse
do IsValidFile_ValidFile_ReturnsTrue

* Display the results.

browse

* Helper method to log test results.

function LogResult(tcTest, tlResult)
insert into TestResults values (tcTest, datetime(), tlResult)

* Helper method to instantiate the class under test.

function CreateFileProcessor
loClass = newobject('LogFileProcessor', 'LogFileProcessor.prg')
return loClass

* Test functions.

function IsValidFile_NoFileName_ReturnsFalse
loClass = CreateFileProcessor()
llResult = not loClass.IsValidFile()
LogResult('IsValidFile handles no filename (no parameter)', llResult)
llResult = not loClass.IsValidFile('')
LogResult(program(), llResult)

function IsValidFile_InvalidExtension_ReturnsFalse
loClass = CreateFileProcessor()
llResult = not loClass.IsValidFile('x.txt')
LogResult(program(), llResult)

function IsValidFile_NonExistentFile_ReturnsFalse
loClass = CreateFileProcessor()
llResult = not loClass.IsValidFile('x.log')
LogResult(program(), llResult)

function IsValidFile_EmptyFile_ReturnsFalse
strtofile('', 'x.log')
loClass = CreateFileProcessor()
llResult = not loClass.IsValidFile('x.log')
LogResult(program(), llResult)
erase x.log

function IsValidFile_ValidFile_ReturnsTrue
strtofile('some text', 'x.log')
loClass = CreateFileProcessor()
llResult = loClass.IsValidFile('x.log')
LogResult(program(), llResult)
erase x.log

Using a testing framework: introducing FoxUnit
A testing framework helps automate testing in numerous ways:

 It provides an infrastructure for tests. Tests are typically methods within a test class
subclassed from a framework class. This provides features such as assertions, which
as we’ll see provide both testing and logging capabilities, and built-in helper
methods.

 It provides a UI to manage a suite of tests, provide one-click running of tests, and the
ability to review test results, such as which tests were run, which ones failed, and
why they failed.

Other development platforms, such as .Net and Java, have a wide assortment of testing
frameworks available, including the very popular NUnit. In 2004, Jim Erwin of Visionpace,
with assistance from other developers including Drew Speedie, created FoxUnit, a
framework modeled somewhat on NUnit for creating and running VFP unit tests. Since
then, FoxUnit has been released as a VFPX project (http://vfpx.codeplex.com), managed by
Eric Selje.

http://vfpx.codeplex.com/

The easiest way to install FoxUnit is if you use Thor, another VFPX project. From the Thor
menu, choose Check for Updates, and in the dialog that appears, turn on the Update
checkbox for FoxUnit, then click Install Updates; see Figure 2. After the installation is done,
you run FoxUnit by choosing it from the Applications submenu in the Thor Tools menu. If
you’d rather not use Thor, you can download the FoxUnit source from the Source Code
page of VFPX.

Figure 2. It's easy to install FoxUnit using Thor.

The FoxUnit UI appears in Figure 3. We’ll look at the features of the UI in more detail later,
but for now, let’s create some unit tests.

Figure 3. The FoxUnit user interface provides functions to create, manage, and run tests.

Click the New Class button to create a new test class. Specify the location of the tests (the
default is the Test subdirectory of the current folder) and the filename for the PRG to be
created. After you click OK, you’re prompted for the type of template to use (see Figure 4).
The choices are:

 The standard template. This template is stored in FXUTestCaseTemplate.txt, which
you can modify as desired by right-clicking the item in the list and choosing Modify
(note: currently, this gives an error if you installed FoxUnit using Thor because the
folder containing the templates doesn’t exist). This template includes lots of
comments that help you to learn FoxUnit.

 The minimal template. This template, stored in stored in
FXUTestCaseTemplate_Minimal.txt, only includes templates for the Setup and
Teardown methods.

 A template of your own. This is just a PRG or text file used as the source for the new
test class. You can add it to the list by right-clicking an existing item and choosing
Add a Template or clicking the “Select a custom FoxUnit template” button. I’ve
created a simple template called SFUnitTestTemplate.txt that’s even more minimal
than the minimal template but has a couple of features I use.

 Copy an existing test class.

Figure 4. Select the type of test class template you wish to use.

Listing 5 has the tests from Listing 4 as FoxUnit tests.

Listing 5. The FoxUnit tests for the LogFileProcessor class.

define class LogFileProcessorTests as FxuTestCase of FxuTestCase.prg
 #if .f.
 local this as LogFileProcessorTests of LogFileProcessorTests.PRG
 #endif

 icTestPrefix = 'Test'
 oObjectToTest = .NULL.

 function Setup
 This.oObjectToTest = newobject('LogFileProcessor', 'LogFileProcessor.prg')
 endfunc

 function TearDown
 erase x.log
 endfunc

 function TestIsValidFile_NoFileName_ReturnsFalse
 llResult = This.oObjectToTest.IsValidFile()
 This.AssertFalse(llResult)
 endfunc

 function TestIsValidFile_EmptyFileName_ReturnsFalse
 llResult = This.oObjectToTest.IsValidFile('')
 This.AssertFalse(llResult)
 endfunc

 function TestIsValidFile_InvalidExtension_ReturnsFalse
 llResult = This.oObjectToTest.IsValidFile('x.txt')
 This.AssertFalse(llResult)
 endfunc

 function TestIsValidFile_NonExistentFile_ReturnsFalse
 erase x.log
 llResult = This.oObjectToTest.IsValidFile('x.log')
 This.AssertFalse(llResult)
 endfunc

 function TestIsValidFile_EmptyFile_ReturnsFalse
 strtofile('', 'x.log')
 llResult = This.oObjectToTest.IsValidFile('x.log')
 This.AssertFalse(llResult)
 endfunc

 function TestIsValidFile_ValidFile_ReturnsTrue
 strtofile('some text', 'x.log')
 llResult = This.oObjectToTest.IsValidFile('x.log')
 This.AssertTrue(llResult)
 endfunc
enddefine

Here are some things to note about this code:

 All tests are included in a single class which is a subclass of FxuTestCase, one of the
FoxUnit classes.

 The LOCAL statement inside the #IF block is there so IntelliSense works on the
class.

 The built-in icTestPrefix property is set to “Test,” which tells FoxUnit that only
methods starting with “Test” are considered to be test methods. This allows you to
add helper methods that test methods call without FoxUnit treating them like test
methods.

 The Setup method, which runs at the start of each test in the class, instantiates
LogFileProcessor into the custom oObjectToTest property. This allows test methods
to simply use that property rather than calling a helper method like Listing 4 did or
instantiating the class themselves.

 The Teardown method, which runs after each test is done, erases x.log because
some tests create that file; this means the test class cleans up after itself.

 Each test method calls the IsValidFile method of This.oObjectToTest with various
parameters, and uses an assert method to indicate whether the test succeeded or
failed.

Click the Class button in the FoxUnit toolbar to run all tests (the All button runs all tests in
all classes and Selected runs just the test selected in the list). Each test is highlighted in

green if it passed and red if not, and the results at the bottom display in green if all tests
pass or red if at least one test failed. See Figure 5.

Figure 5. If all tests pass, FoxUnit shows green.

Figure 6 shows what FoxUnit looks like when one of the tests fails.

Figure 6. FoxUnit displays failed tests in red.

FoxUnit features
In addition to the ones we’ve already discussed, FoxUnit has the following features:

 Its main form has Desktop set to .T. so you can move its window outside the VFP
_screen.

 To load a test class into the list, click Load Class. The Load Class dialog (Figure 7)
displays a list of PRGs in the default folder, but you can also select a different folder
by clicking Browse. Turn on Test Cases Only to omit PRGs that don’t contain FoxUnit
tests. Turn on New Test Cases to only display PRGs that aren’t already loaded. Select
one or more PRGs and click Load to load them.

Figure 7. The Load Class dialog allows you to add additional test classes to the list.

 Click Add Test to add a test to the selected test class.

 Add VCX allows you to select a VCX and automatically generates test methods for
each of the public methods in each of the classes in that VCX. These are generic tests
so each needs to be modified to actually do the correct thing.

 Remove Selected removes the tests in the selected test class from the list, but
doesn’t delete them. Use Load Class to add them back to the list.

 Click Reload Selected to reload the selected test class in case you edited the PRG
outside of FoxUnit.

 To edit a specific test, double-click it in the list or click the Modify Selected button.

 To filter the list of tests, enter strings used to filter the class and/or test names and
press Tab. The Clear Filter button clears the filter.

 The Failures and Errors tab displays assertion failures (that is, the call to an assert
method returned false) and errors that occurred during the last test run.

 You can change the font for the test list, the Failures and the Error and Message tabs
by right-clicking and choosing Font. Choose Reset Font to Default to reset the font.

 The Acknowledgements and License functions in the shortcut menu display the
appropriate text.

 Figure 8 and Figure 9 show the dialog displayed by the Options function in the
shortcut menu. These options are well-described.

Figure 8. The Debugging page of the Options dialog specifies error handling and debugging options for test
runs.

Figure 9. The Interface page of the Options dialog controls some UI settings.

Assertions
FoxUnit supports the following assertions:

 AssertFalse: asserts that the expression passed as the first parameter evaluates to
false.

 AssertTrue: asserts that the expression passed as the first parameter evaluates to
true.

 AssertEquals: asserts that the expressions passed as the first two parameters
evaluate to the same value. Pass an optional message (see below) as the third
parameter and .T. as the fourth parameter to do a case-insensitive string
comparison.

 AssertNotEmpty: asserts that the expression passed as the first parameter evaluates
to a non-empty value.

 AssertNotNull: asserts that the expression passed as the first parameter evaluates to
a non-null value.

 AssertNotNullOrEmpty: asserts that the expression passed as the first parameter
evaluates to a non-null and non-empty value.

All of these methods accept an additional parameter: the message to display in the Failures
and Errors tab when the assertion fails.

Mock objects
One thing that complicates testing is making sure you’re only testing the method you think
you’re testing. For example, consider the updated LogFileProcessor class shown in Listing
6, taken from NewLogFileProcessor.PRG.

Listing 6. This updated LogFileProcessor uses a helper object.

define class LogFileProcessor as Custom
 cErrorMessage = ''
 oParser = .NULL.
 nLogType = 1

 function IsValidFile(tcFileName)
 local llReturn
 do case
 case vartype(tcFileName) <> 'C' or empty(tcFileName)
 This.cErrorMessage = 'Invalid filename'
 llReturn = .F.
 case lower(justext(tcFileName)) <> 'log'
 This.cErrorMessage = 'Not a log file'
 llReturn = .F.
 case not file(tcFileName)
 This.cErrorMessage = 'File does not exist'
 llReturn = .F.
 case empty(filetostr(tcFileName))
 This.cErrorMessage = 'File is empty'
 llReturn = .F.
 otherwise
 llReturn = .T.
 endcase
 return llReturn
 endfunc

 function ImportLog(tcFileName)
 if This.nLogType = 1
 This.oParser = createobject('XMLFileParser')
 else
 This.oParser = createobject('CSVFileParser')
 endif
 lnSelect = select()
 lcCursor = sys(2015)
 lnResult = -1
 llOK = This.oParser.ParseFile(tcFileName, lcCursor)
 if llOK
 lnResult = This.ProcessFile(lcCursor)
 use in (lcCursor)
 else
 This.cErrorMessage = This.oParser.cErrorMessage
 endif
 select (lnSelect)
 return lnResult
 endfunc

 function ProcessFile(tcCursor)
 return reccount(tcCursor)
 endfunc
enddefine

define class FileParser as Custom
 cErrorMessage = ''

 function ParseFile(tcFile, tcCursor)
 return ''
 endfunc
enddefine

define class CSVFileParser as FileParser
 function ParseFile(tcFile, tcCursor)
 create cursor (tcCursor) (DATE D, TYPE N(1), TEXT C(80))
 append from (tcFile) delimited
 return .T.
 endfunc
enddefine

define class XMLFileParser as FileParser
 function ParseFile(tcFile, tcCursor)
 try
 xmltocursor(tcFile, tcCursor)
 llReturn = .T.
 catch to loException
 This.cErrorMessage = loException.Message
 llReturn = .F.
 endtry
 return llReturn
 endfunc
enddefine

The ImportLog method uses a helper object, an instance of either CSVFileParser or
XMLFileParser, depending on the type of log file, to convert the text log file into a cursor it
can process. Listing 7 shows a unit test that tests whether ImportLog returns the expected
value for a sample XML log.

Listing 7. Test that ImportLog returns the expected value.

function TestImportLog_ImportXML_ReturnsCorrectValue
 text to lcLog noshow pretext 2
 <logs>
 <log>
 <date>01/01/2013</date>
 <type>2</type>
 <text>This is a log entry</text>
 </log>
 <log>
 <date>01/02/2013</date>
 <type>1</type>
 <text>This is another log entry</text>
 </log>
 </logs>
 endtext
 strtofile(lcLog, 'x.log')
 lnActual = This.oObjectToTest.ImportLog('x.log')
 lnExpected = 2
 This.AssertEquals(lnExpected, lnActual, This.oObjectToTest.cErrorMessage)
endfunc

This test works as expected. However, it isn’t really a good test because it’s testing more
than the functionality of the ImportLog method: it’s also inadvertently testing the
functionality of the XMLFileParser. In other words, we’re doing an integration test, which
Roy Osherove defines as testing two or more dependent software modules as a group.
While it has its place, the problem with integration testing is that there are many points of
failure so it’s hard to find the source of the problem if a test fails. Here, our goal is to just
test the LogFileProcessor class, not other classes it happens to interact with.

For example, suppose the XML used in the test is flawed. In that case, the XMLTOCURSOR()
call in XMLFileParser.ParseFile would throw an exception. But that’s not really the concern
of ImportLog. All we want to know when we test it is that it did its job.

In order to test just ImportLog, we have to take the behavior of the helper object out of the
equation. The way we do that is by using a mock object instead.

There are actually several types of mock objects—stubs, mocks, and fakes, to name a few—
but the important feature they all share is that they take the place of a real object, providing
the same interface (not user interface but properties and methods) of the replaced object
but having no or very little behavior. I won’t distinguish between the types and use “mock”
generically.

Before we look at a mock object, we should discuss a design concept called dependency
injection that isn’t directly part of testing but impacts the testability of your code.

Dependency injection
Notice in Listing 6 that ImportLog instantiates either XMLFileParser or CSVFileParser into
oParser. That causes a problem for testing: we can’t use a mock for the helper object
because the method we want to test only uses the hard-coded classes. (This design also
limits the capabilities of ImportLog. What if we want to handle some other type of log file
that needs a different parsing object? We’d have to change the IF statement in ImportLog to
a CASE and add progressively more cases as we add new log types.)

Wikipedia defines dependency injection as “a software design pattern that allows the
removal of hard-coded dependencies and makes it possible to change them, whether at
run-time or compile-time.” This is generally implemented by having the client or caller of a
class instantiate dependencies on behalf of the class. There are several ways to do this:

 Set a property to the dependency. Rather than having ImportLog instantiate some
class into oParser, the caller is responsible for doing that; ImportLog simply expects
that it’s been done.

 Pass the dependency as a parameter to the Init method of the class. The Init method
of NewLogFileProcessor could look something like this:

function Init(toParser)
 This.oParser = toParser
 endfunc

 Pass the dependency as a parameter to the method using it. This isn’t used as often
as the first two choices because if many methods use the dependency, it must be
passed to each of them.

 Have properties of the class containing the name and library to instantiate the
dependency from. I use this technique a lot because it’s very flexible: change the
values of the properties and a different class gets instantiated. The only issue with
this is if the dependency has to be instantiated in Init, you can’t change the
properties at run-time, only design-time.

 Use a class factory. This is often used in data-driven frameworks like Visual
FoxExpress. The class calls a method of the class factory, telling it that it needs a log
file parser. The class factory decides what class to instantiate, often by looking it up
in a table the developer (or even end-user) can configure, and returns the object,
which the class then uses. While this is a popular mechanism in VFP applications, it
makes testing more difficult because the test has to configure the class factory
properly and it ultimately tests the functionality of the class factory in addition to
the class under test.

Let’s use the first mechanism. Here’s the change in ImportLog to support that:

if vartype(This.oParser) <> 'O'

 This.cErrorMessage = 'oParser was not set to a parser object'
 return -1
endif
! if This.nLogType = 1
! This.oParser = createobject('XMLFileParser')
! else
! This.oParser = createobject('CSVFileParser')
! endif

The only change needed in the test is to instantiate the desired parser object. We could use:

This.oObjectToTest.oParser = newobject('XMLFileParser', 'NewLogFileProcessor.prg')

but that still uses the XMLFileParser and doesn’t resolve the problem we’re trying to solve
using dependency injection. Instead, let’s create a mock file parser class.

Creating a mock
The purpose of a mock object is to have the interface of a dependency object without
having its behavior. Because it has no or little behavior, it allows interaction between the
objects without the overhead of additional complications.

For example, look at what the ParseFile methods of CSVFileParser and XMLFileParser do:
they accept a file name and a cursor name as parameters, create a cursor with the name of
the second parameter, and return .T. or .F. What they do internally differs, but from
LogFileProcessor’s viewpoint, that’s immaterial. So, let’s create a mock class that does the
minimum necessary to work with LogFileProcessor. See Listing 8.

Listing 8. MockFileParser is a mock class to use with LogFileProcessor.

define class MockFileParser as Custom
 function ParseFile(tcFile, tcCursor)
 create cursor (tcCursor) (DATE D, TYPE N(1), TEXT C(80))
 append blank
 return .T.
 endfunc
enddefine

Listing 9 shows the updated test. Notice that this test is simpler than Listing 7: it isn’t
concerned with having valid XML content or what that content consists of. Since
MockFileParser doesn’t care about files or their contents but simply creates a dummy
cursor, we’re freed from the issue of testing the parser’s behavior at the same time as
LogFileProcessor’s.

Listing 9. The updated test using the mock object is simpler.

function TestImportLog_Import_ReturnsCorrectValue_UsingMock
 This.oObjectToTest.oParser = createobject('MockFileParser')
 lnActual = This.oObjectToTest.ImportLog('x.log')
 lnExpected = 1
 This.AssertEquals(lnExpected, lnActual, This.oObjectToTest.cErrorMessage)
endfunc

Automating mock creation with FoxMock
The mock object in Listing 8 was easy to create but if you have a lot of dependencies or the
dependency objects are complex, it can be a lot more work to create mocks for all of them.

Other development environments such as .Net and Java have frameworks that create mock
objects automatically. Fortunately for us VFP developers, Christof Wollenhaupt created a
mocking framework named FoxMock. According to Christof, the purpose of FoxMock is to
“dynamically create objects that simulate existing objects but do not duplicate their
behavior.” He presented FoxMock at Southwest Fox 2012; if you don’t have access to the
downloads for his session, you can download FoxMock from
https://bitbucket.org/cwollenhaupt/foxpert.tools.foxmock/src.

Let’s look at a little more complicated class to test: a customer business object class shown
in Listing 10, taken from BizObject.PRG. The GetCustomer method uses a database
connection object to retrieve data from a database. Different type of connection objects
could deal with VFP, SQL Server, or other types of databases, so the business object doesn’t
have to worry about that.

Listing 10. This customer business class collaborates with a database connection object.

define class CustomerBO as Custom
 oConnection = .NULL.
 cErrorMessage = ''

 function Init(toConnection)
 This.oConnection = toConnection
 endfunc

 function GetCustomer(tcID)
 loCustomer = .NULL.
 lnSelect = select()
 if This.oConnection.Connect()
 private lcID
 lcID = tcID
 if This.oConnection.Execute('select * from Customers where ' + ;
 'CustomerID=?lcID')
 if reccount() > 0
 scatter name loCustomer
 else
 This.cErrorMessage = 'Record not found'
 endif
 use
 else
 This.cErrorMessage = 'SQL statement failed: ' + ;
 This.oConnection.cErrorMessage
 endif
 else
 This.cErrorMessage = 'Could not connect to database: ' + ;
 This.oConnection.cErrorMessage
 endif
 select (lnSelect)

https://bitbucket.org/cwollenhaupt/foxpert.tools.foxmock/src

 return loCustomer
 endfunc
enddefine

To use this class, we need a connection class. However, it may not exist yet or it may
connect to a database we haven’t created yet. But for testing, we can use a mock object so
the connection class doesn’t have to exist.

Listing 11 shows a FoxUnit test class for CustomerBO. The Setup method instantiates
FoxMock into the oMock property so it’s available to all tests. Each test in this class uses
FoxMock to create a mock connection object that satisfies the requirements of
CustomerBO.

Listing 11. The tests for CustomerBO use FoxMock to automatically create mock connection objects.

define class bizobjecttests as FxuTestCase of FxuTestCase.prg
 #if .f.
 local this as bizobjecttests of bizobjecttests.PRG
 #endif

 icTestPrefix = 'Test'
 oObjectToTest = .NULL.
 oMock = .NULL.

 function Setup
 This.oMock = newobject('FoxMock', 'FoxMock.prg')
 This.oObjectToTest = newobject('CustomerBO', 'BizObject.prg')
 endfunc

 function TearDown
 endfunc

 function TestGetCustomer_CantConnect_ReturnsNull
 loConn = This.oMock.New.Property('cErrorMessage').Is(;
 "'cannot connect'").Method('Connect').Returns('.F.')
 This.oObjectToTest.oConnection = loConn
 loActual = This.oObjectToTest.GetCustomer()
 This.AssertTrue(isnull(loActual))
 endfunc

 function TestGetCustomer_CantExecute_ReturnsNull
 loConn = This.oMock.New.Property('cErrorMessage').Is(;
 "'cannot execute'").Method('Connect').Returns('.T.').Method(;
 'Execute').Returns('.F.')
 This.oObjectToTest.oConnection = loConn
 loActual = This.oObjectToTest.GetCustomer()
 This.AssertTrue(isnull(loActual))
 endfunc

 function TestGetCustomer_NoRecords_ReturnsNull
 create cursor Temp (Field1 C(1))
 loConn = This.oMock.New.Method('Connect').Returns('.T.').Method(;
 'Execute').Returns('.T.')

 This.oObjectToTest.oConnection = loConn
 loActual = This.oObjectToTest.GetCustomer()
 This.AssertTrue(isnull(loActual))
 use in select('Temp')
 endfunc

 function TestGetCustomer_FindRecord_ReturnsObject
 create cursor Temp (Field1 C(1))
 insert into Temp values ('x')
 loConn = This.oMock.New.Method('Connect').Returns('.T.').Method(;
 'Execute').Returns('.T.')
 This.oObjectToTest.oConnection = loConn
 loActual = This.oObjectToTest.GetCustomer()
 This.AssertNotNull(loActual)
 use in select('Temp')
 endfunc

 function TestGetCustomer_FindRecord_ReturnsValue
 create cursor Temp (Field1 C(1))
 insert into Temp values ('x')
 loConn = This.oMock.New.Method('Connect').Returns('.T.').Method(;
 'Execute').Returns('.T.')
 This.oObjectToTest.oConnection = loConn
 loActual = This.oObjectToTest.GetCustomer()
 This.AssertEquals('x', loActual.Field1)
 use in select('Temp')
 endfunc
enddefine

Let’s look at the first test. TestGetCustomer_CantConnect_ReturnsNull. As its name
suggests, it tests that GetCustomer returns null if the connection object can’t connect to the
database. So, we create a mock connection object whose Connect method returns .F. (it also
has a cErrorMessage property that contains “cannot connect” because GetCustomer uses
that property).

loConn = This.oMock.New.Property('cErrorMessage').Is(;
 "'cannot connect'").Method('Connect').Returns('.F.')

Let’s break this down. This.oMock.New creates a new object. Property('cErrorMessage')
adds a cErrorMessage property to that object and Is("'cannot connect'") specifies the value
of the property (note that since the specified value will be evaluated, it must be in quotes,
so a string must have a double set of quotes). Method('Connect') adds a Connect method to
the object and Returns('.F.') specifies that the method returns .F. Now we simply tell the
CustomerBO object being tested to use the mock object:

This.oObjectToTest.oConnection = loConn

Since the connection object’s Connect method returns .F., calling GetCustomer results in a
null value.

TestGetCustomer_FindRecord_ReturnsObject is a little more complicated. We want both
the Connect and Execute methods of the mock connection object to return .T. and don’t
need the cErrorMessage property:

loConn = This.oMock.New.Method('Connect').Returns('.T.').Method(;
 'Execute').Returns('.T.')

However, since the mock object has no other behavior, the test has to create and populate
the cursor used by GetCustomer. As with other tests, we then set the oConnection property
of the object being tested to the mock object, call GetCustomer, and test that an object was
returned.

As you can see, configuring FoxMock to create an object with the desired interface is easy.
FoxMock actually has a lot more capability than I show here, so I recommend reading
Christof’s white paper to discover what else you can do with it.

Test-driven development
Test-driven development, or TDD, is a methodology of software development in which tests
are written along with, and sometime before, the code being tested. The idea of TDD is that
you write a test that fails because the code it’s testing doesn’t exist yet or does nothing,
then change the code so the test passes, write more tests that fail, write more code so tests
pass, and so on. The tests are written to test the functionality of the spec, not the code, and
the code is written so tests pass. Thus, the code implements the functionality of the spec
because the tests say it does.

You don’t have to use TDD to take advantage of unit testing. I personally don’t (currently
anyway) follow TDD but I do tend to write tests very soon after I’ve started working on a
method.

Testing UI
Testing your UI is more complicated than testing “engine” code because it relies on user
interaction such as typing in a textbox or clicking a button. Although VFP has a MOUSE
command to simulate mouse movement and clicks and KEYBOARD to simulate typing,
using them can result in fragile tests; any changes to the locations of control causes the
tests to break even if the behavior hasn’t changed. Fortunately, because of how VFP
implements event handlers, you can simulate entering text by writing to the Value property
of controls or clicks by calling the Click method. Still, testing UI is a lot more work than
testing non-UI code, so that’s another reason to minimize the amount of code in the UI and
instead have UI events call methods of other objects.

Testing legacy code
It can be difficult to write unit tests for legacy code for several reasons:

 The code usually doesn’t have “seams,” places where mock objects can replace real
ones.

 Refactoring code that works only so tests can be created seems like a waste of time.

 Refactoring code that has no tests to begin with is a risky business.

 It’s difficult to determine where to begin.

 Clients usually don’t want to pay for something that doesn’t add new features to the
application.

Roy Osherove suggests starting with integration tests before refactoring so you can test
whether the refactoring broke the functionality or not, and then add unit tests in either an
“easy first” or “hard first” manner, depending on your team’s experience with unit testing
principles.

Guidelines for writing good unit tests
Here are some guidelines I use for writing good unit tests. I’ve taken these guidelines from
Roy Osherove’s book, various blogs, and my own experiences.

 Keep tests simple. A unit test should test only one aspect of one method of one class.

 Related to the previous point, ideally a test should have a single assertion. Usually
more than one assertion is a sign that the test is testing more than one thing. I’ll
admit this is a guideline I occasionally break (five points to Gryffindor if you find
where I’ve done that in this document) but I usually don’t like the “smell” of the test
when I do. If you do break this rule, be sure to use the optional message parameter
of the assert methods so you know exactly which one failed.

 Use descriptive names for your tests. Help the developer coming after you (or even
yourself, looking at the test code months later) by naming exactly what each test is
supposed to test for and what the result of the test should be.

 Avoid logic in tests. If a test has conditional code (IF or CASE statements) or loops
(DO WHILE, SCAN, or FOR), the code risks being complex and introducing its own
set of bugs. Now you have a second code base to maintain!

 Only test for what the code is supposed to do, not what it does. It’s better to write a
unit test by looking at the specs for the code rather than reading the actual code. The
problem with writing tests based on what the code does is that you’re testing
implementation rather than behavior. What if the internals of the code change but
the interface and behavior don’t? Now tests testing internal implementation are
broken even though the behavior hasn’t changed. If method A calls private method
B, which has its own behavior, it might be better to make method B public so you
can write unit tests just for method B.

 Use helper methods to eliminate duplication. Duplicate code in tests is as bad as it is
in application code. Refactor your tests as necessary to eliminate duplicate code. We
saw earlier that I created helper methods to instantiate the object under test. Other
helper methods might set up commonly used mock objects. Don’t forget that the
Setup and Teardown methods are really built-in helper methods available for your
use.

 To expand upon something in the previous point, you must ensure all tests run in
isolation. Suppose you set up certain external conditions, such as creating a log file
in our examples, in one test and don’t reset them when the test is done. That can
affect other tests in confusing (to the developer) ways. The worst case is if the tests
give different results depending on whether they’re run alone or along with other
tests because now you’re not debugging your application code, you’re debugging
your tests! If your objects have certain external expectations, make sure every test
has a clean starting point, not one that could be polluted from a previously run test.

For example, the second test fails because it assumes x.log doesn’t exist, but the first
test created and didn’t delete it:

 function TestIsValidFile_ValidFile_ReturnsTrue
 strtofile('some text', 'x.log')
 llResult = This.oObjectToTest.IsValidFile('x.log')
 This.AssertTrue(llResult)
 endfunc

 function TestIsValidFile_NonExistentFile_ReturnsFalse
 llResult = This.oObjectToTest.IsValidFile('x.log')
 This.AssertFalse(llResult)
 endfunc

 Don’t tolerate failing tests. If a test fails, there’s a reason for it: either the code being
tested is broken or the test itself if broken. Find out which it is and fix it. Otherwise,
you can’t be confident the code you’re delivering to your customer completely
works or not.

References
Here are some reference materials I used to learn about unit testing:

The Art of Unit Testing, by Roy Osherove, ISBN 978-1-933988-27-6. Although his example
are all in C# and he discusses .Net tools, the principles and techniques he describes are
universal.

Using FoxUnit for Test-Driven Development, by Andrew MacNeill,
http://www.aksel.com/whitepapers/foxunit.htm. This was one of the first white papers
written about unit testing in the VFP world and still stands up well today.

Summary
Unit testing is a very important technique in software development. It’s a shame that it isn’t
more prevalent in the VFP world, so hopefully this document will get you started in unit
testing so you can share the message with other VFP developers.

Biography
Doug Hennig is a partner with Stonefield Software Inc. He is the author of the award-
winning Stonefield Database Toolkit (SDT); the award-winning Stonefield Query; the

http://www.amazon.com/The-Art-Unit-Testing-Examples/dp/1933988274/ref=sr_1_1?ie=UTF8&qid=1373923940&sr=8-1&keywords=The+Art+of+Unit+Testing
http://www.aksel.com/whitepapers/foxunit.htm

MemberData Editor, Anchor Editor, and CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My namespace and updated Upsizing Wizard in
Sedna.

Doug is co-author of VFPX: Open Source Treasure for the VFP Developer, Making Sense of
Sedna and SP2, the What’s New in Visual FoxPro series, Visual FoxPro Best Practices For The
Next Ten Years, and The Hacker’s Guide to Visual FoxPro 7.0. He was the technical editor of
The Hacker’s Guide to Visual FoxPro 6.0 and The Fundamentals. All of these books are from
Hentzenwerke Publishing (http://www.hentzenwerke.com). He wrote over 100 articles in
10 years for FoxTalk and has written numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers Conference (DevCon) starting in 1997
and at user groups and developer conferences all over the world. He is one of the
organizers of the annual Southwest Fox and Southwest Xbase++ conferences
(http://www.swfox.net). He is one of the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was a Microsoft Most Valuable
Professional (MVP) from 1996 through 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award (http://tinyurl.com/ygnk73h).

Copyright, 2013 Doug Hennig.

http://www.hentzenwerke.com/
http://www.foxrockx.com/
http://www.swfox.net/
http://vfpx.codeplex.com/
http://tinyurl.com/ygnk73h
http://www.hentzenwerke.com/catalog/hackfox7.htm
http://www.hentzenwerke.com/catalog/newin7.htm
http://www.hentzenwerke.com/catalog/wnvfp8.htm
http://www.hentzenwerke.com/catalog/wnvfp9.htm
http://www.hentzenwerke.com/catalog/vfpbp10.htm
http://www.hentzenwerke.com/catalog/makingsos.htm
http://www.stonefieldquery.com/sdt.html
http://www.stonefieldquery.com
http://vfpx.codeplex.com/
http://www.swfox.net
http://www.foxrockx.com/seite.htm

