
Have Your Cake and Eat it Too
Doug Hennig

Visual FoxPro 7.0 has several new functions that can make certain tasks easier, such as executing

script code or performing text merges. However, since it’s still a long way from release, this month’s

article presents several routines that emulate these new functions in VFP 6 so you can start using

these capabilities today.

Any time Microsoft releases details of an upcoming version, we go through “version envy”: we wish we had

some of those new functions now. Some times, new functions added to the language don’t do anything you

couldn’t do before, but do it in a single function call rather than a lot of code. In this case, we can take

advantage of these functions before the new version is released by creating PRGs with the same names as

the desired functions that implement the desired behavior. In VFP 5.0, for example, I created several

routines that provide the same behavior as new functions added in VFP 6: NEWOBJECT.PRG,

VARTYPE.PRG, JUSTSTEM.PRG, JUSTPATH.PRG, etc. These PRGs were discussed in my November

1999 FoxTalk column. Once you start using the new version of VFP, you simply discard the PRGs and their

new function counterparts automatically kick in.

ExecScript
At the Miami DevCon in September 2000, Ken Levy said his favorite new function in VFP 7.0 is

EXECSCRIPT(). This function accepts a string, which should be VFP code, as a parameter and executes it.

Why is this capability useful? That’s like asking why macro expansion in VFP is useful—it gives you the

ability to define behavior at runtime rather than development time. You can generate some code that

depends on certain runtime conditions, then execute that code. It can give your more advanced users the

ability to script new behavior in your application. An example is an accounting system that provides its

users with the ability to perform additional tasks for key operations. Perhaps a user wants to send an email

to their client when an order from that client is posted. They could write some code to send the email and

tell the accounting system to execute that code when an order is posted. Even if you don’t provide such

advanced capabilities in your applications, here’s a simple one I’ll bet you’ll want to use: a runtime

command interpreter you can hook into your application so you can have the equivalent of the VFP

Command window in a runtime environment.

 Because I expect to use EXECSCRIPT() extensively in VFP 7.0, I decided to create

EXECSCRIPT.PRG so I can begin using its functionality in VFP 6. EXECSCRIPT.PRG accepts a string

parameter, the code to execute, and returns either the return value from that code (or .T. if the code doesn’t

return a value) or .NULL. if the code couldn’t execute (such if there’s an error in the code or if this PRG is

used in a version of VFP prior to VFP 6 Service Pack 3). It works by copying the code to a file, compiling

that file (which is why it requires VFP 6 Service Pack 3; before that version, it wasn’t possible to use the

COMPILE command in a runtime environment), then executing it. Here’s the code (this listing doesn’t

show the comments or ASSERT statements that appear in the PRG file):

lparameters tcCode

local luReturn, ;

 lcVersion, ;

 lcFile, ;

 lcName, ;

 luReturn

luReturn = .NULL.

#if type('version(4)') <> 'U'

 lcVersion = version(4)

 lcVersion = substr(lcVersion, ;

 at('.', lcVersion, 2) + 1)

 if lcVersion >= '8492'

 lcFile = 'A' + sys(3) + '.PRG'

 strtofile(tcCode, lcFile)

 compile (lcFile)

 lcName = juststem(lcFile) + '()'

 luReturn = &lcName

 erase (lcFile)

 erase forceext(lcFile, 'FXP')

 endif lcVersion >= '8492'

#else

 error 'ExecScript requires VFP 6 SP 3 or later'

#endif

return luReturn

 SFConsoleForm (in SFCONSOLE.VCX) is a simple command interpreter that acts like the VFP

Command window but in a runtime environment. It’s just a form with an editbox for entering code and an

command button to execute the code in the editbox using EXECSCRIPT. However, I added a few bells and

whistles, including the ability to load code from a file and to scroll through a code “history” (similar to the

history of commands the VFP Command window displays) so you can re-execute code. This class can be

called from an error handler to assist with debugging or from a menu item only available to developers at

runtime to allow you to perform tasks that would normally require a development copy of VFP at the client

site. To see SFConsoleForm in action, run TESTCONSOLE.PRG.

TextMerge
Text merging is a much more important function these days than it was in the past. For example, a lot of

applications today output to HTML or XML for reporting purposes. Text merging gives you the ability to

mix text (such as HTML tags) and expressions (such as VFP field names) and have the expressions

evaluated at runtime to produce some output. Expressions are distinguished from text by delimiters; << and

>> are the defaults but they can be changed with the SET TEXTMERGE DELIMITERS command.

 VFP 7.0 includes a new TEXTMERGE() function that makes creating strings of mixed text and

expressions much easier. This function accepts a string and returns that string with any expressions

evaluated. It can accept three other parameters: .T. to perform the expression evaluation recursively (so

expressions with expressions are evaluated) and the left and right expression delimiter strings.

 So I can start using the capabilities of this function now, I created TEXTMERGE.PRG. It works by

creating some code that performs the text merge of the specified string to a file, executing that code using

EXECSCRIPT.PRG, then reading the contents of the file back into a variable; this process is repeated if

necessary until there are no more expressions in the string. You may be wondering why TEXTMERGE uses

EXECSCRIPT on some generated code rather than just text merging the string to a file directly using code

similar to the following:

\\<<lcString>>

 This won’t work for two reasons. First, if the expression delimiters specified to this routine are

something other than << and >>, this code won’t work because the SET TEXTMERGE DELIMITERS

command has changed the delimiters. Second, the text merge commands (\ and \\) aren’t recursive, so they

can’t evaluate the expressions inside the string, which is the whole point of this routine in the first place.

 Here’s the code for this routine; this listing doesn’t show the header comments or ASSERT statements

that appear in the PRG file:

lparameters tcString, ;

 tlRecurse, ;

 tcLeft, ;

 tcRight

local lcDelimiters, ;

 lnDelimiters, ;

 lcDefaultLeft, ;

 lcDefaultRight, ;

 lcLeft, ;

 lcRight, ;

 lcString, ;

 lcTempFile, ;

 lcCode

* If the left and right delimiters weren't specified,

* use the defaults.

lcDelimiters = set('textmerge', 1)

lnDelimiters = len(lcDelimiters)/2

lcDefaultLeft = left(lcDelimiters, lnDelimiters)

lcDefaultRight = right(lcDelimiters, lnDelimiters)

lcLeft = iif(pcount() > 2, tcLeft, ;

 lcDefaultLeft)

lcRight = iif(pcount() > 2, tcRight, ;

 lcDefaultRight)

* If the specified string contains the expression

* delimiters, let's process it. First, create a temporary

* filename, then set the textmerge delimiters to the

* desired values.

lcString = tcString

if lcLeft $ lcString

 lcTempFile = sys(2015) + '.txt'

 set textmerge delimiters to lcLeft, lcRight

* As long as the delimiters exist in the string, create

* some code that performs the text merge, execute it,

* then read the file back into the string.

 do while lcLeft $ lcString

 lcCode = 'set textmerge on to ' + lcTempFile + ;

 ' noshow' + chr(13) + '\\' + lcString + chr(13) + ;

 'set textmerge to' + chr(13)

 execscript(lcCode)

 lcString = filetostr(lcTempFile)

* If we're not supposed to recurse, we're done.

 if not tlRecurse

 exit

 endif not tlRecurse

 enddo while lcLeft $ lcString

* Erase the temporary file and restore the delimiters.

 erase (lcTempFile)

 set textmerge delimiters to lcDefaultLeft, ;

 lcDefaultRight

endif lcLeft $ lcString

return lcString

 To make TEXTMERGE.PRG (and its VFP 7.0 counterpart) even more useful, I created an

SFTextMergeProcessor class (in SFTEXTMERGE.VCX) that provides not just expressions inside a string

but script code as well. Why would this be useful? Think about an Active Server Page (ASP) document; it’s

a mixture of HTML and script code. Wouldn’t it be nice if you could do something similar in VFP? That

would allow you to quickly create an HTML document from some VFP data without having to hard-code

the HTML into your application. You could provide an HTML “template” and allow the user to change the

template if they desire. Here’s an example of such a template:

<html>

<body>

<h1><%= dbf() %></h1>

<table border=1>

<tr><th>Company</th><th>Contact</th></tr>

<% scan

lcHTML = '<tr><td>' + trim(COMPANY) + '</td><td>'

lcHTML = lcHTML + trim(CONTACT) + '</td></tr>' + chr(13)

Response.Write(lcHTML)

endscan %>

</table>

</body>

</html>

 Notice that while this looks like an ASP document, the script code between the <% and %> tags is

actually VFP code! The first script code (on the third line) outputs the file name of the current table and the

second script code processes every record in the table, outputting the company and contact names into an

HTML table.

 TESTTEXTMERGE.PRG is a sample program that uses the template shown above (in

TEMPLATE.HTML) against the CUSTOMER table in the TESTDATA database. This program creates an

HTML file, TEST.HTML, from the processed template and displays the file in your default browser. Note

that it has no idea of what the HTML should look like; that’s completely handled in the template file.

open database _samples + 'data\testdata'

use customer

* Load an HTML template to output company and contact

* name in a table.

lcStr = filetostr('template.html')

* Create the textmerge processor object and process the

* HTML template.

oOutput = newobject('SFTextMergeProcessor', ;

 'SFTextMerge')

lcOutput = oOutput.Output(lcStr)

* If everything worked, create the HTML file and display

* it.

if empty(oOutput.cErrorMessage)

 strtofile(lcOutput, 'test.html')

 declare integer ShellExecute in SHELL32.DLL ;

 integer nWinHandle, ;

 string cOperation, ;

 string cFileName, ;

 string cParameters, ;

 string cDirectory, ;

 integer nShowWindow

 ShellExecute(0, 'Open', 'test.html', '', '', 1)

* Display the error that occurred.

else

 messagebox(oOutput.cErrorMessage)

endif empty(oOutput.cErrorMessage)

return

 SFTextMergeProcessor is a simple class. Its Output method processes the specified string and returns

the result, evaluating any expressions and executing any script code. Output creates a variable called

Response that can be used in the script code to add to the output stream by calling the Write method (which

simply adds the passed string to the protected cOutput property); this variable is called Response so it looks

like the ASP Response object. Rather than using TEXTMERGE on the entire string, it processes the string

one line at a time so it can look for and handle script code (anything between <% and %> delimiters). The

result is built up in the cOutput property, and at the end of this method, that property is returned as the

result. Here’s the code for the Output method:

lparameters tcString

local lcCodeLeft, ;

 lcMergeLeft, ;

 laLines[1], ;

 lnLines, ;

 lnI, ;

 lcLine, ;

 lcCode, ;

 lnJ

private Response

with This

* Create a reference to this object called "Response" so

* script code can call methods.

 Response = This

* Create variables for the left delimiters for code and

* for merge strings.

 lcCodeLeft = .cLeftDelimiter + ' '

 lcMergeLeft = .cLeftDelimiter + '='

* Initialize our error message to blank.

 .cErrorMessage = ''

* Initialize the output to blank, then process each line

* in the string.

 .cOutput = ''

 lnLines = alines(laLines, tcString)

 for lnI = 1 to lnLines

 lcLine = laLines[lnI]

* If this line is the start of script code, get all text

* up to the end of the code and execute it.

 if lcLine = lcCodeLeft

 lcCode = ''

 for lnJ = lnI to lnLines

 lcLine = laLines[lnJ]

 lcCode = lcCode + ;

 alltrim(strtran(strtran(lcLine, lcCodeLeft), ;

 .cRightDelimiter)) + chr(13)

 if This.cRightDelimiter $ lcLine

 lnI = lnJ

 exit

 endif This.cRightDelimiter $ lcLine

 next lnJ

 execscript(lcCode)

* Use TEXTMERGE() to process the line and add it to the

* output stream. Because "=" in the left delimiter causes

* TEXTMERGE() to send the result to the bit bucket, let's

* strip it off.

 else

 lcLine = strtran(lcLine, lcMergeLeft, ;

 .cLeftDelimiter)

 .Write(textmerge(lcLine, .T., .cLeftDelimiter, ;

 .cRightDelimiter) + chr(13))

 endif lcLine = lcCodeLeft

* Exit if we had an error.

 if not empty(.cErrorMessage)

 exit

 endif not empty(.cErrorMessage)

 next lnI

endwith

return This.cOutput

Conclusion
You can have your cake and eat it too! Even though VFP 7.0 is months away from release, you can start

using some of the new functionality today using the routines discussed in this article. Hopefully, these PRGs

will relieve your version envy a little bit.

Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Saskatchewan, Canada. He is the author

Stonefield’s award-winning Stonefield Database Toolkit. He is also the author of “The Visual FoxPro Data

Dictionary” in Pinnacle Publishing’s “The Pros Talk Visual FoxPro” series. Doug has spoken at the Microsoft

FoxPro Developers Conferences (DevCon) since 1997, as well as user groups and regional conferences all over North

America. He is a Microsoft Most Valuable Professional (MVP) and Microsoft Certified Professional (MCP). He can be

reached at dhennig@stonefield.com.

mailto:dhennig@stonefield.com

