
Handling Multiple Monitors
Doug Hennig

This is the first of several articles on components
of Doug’s in-house library. This issue focuses on
handling multiple monitors when persisting the
size and location of forms.

Like most developers, I have more than one
monitor. My system is a laptop so I use the laptop
display as the primary monitor and a 24” monitor
at the right as the second one. I typically have
browser and explorer windows open on the
second monitor and keep the primary monitor for
those things I live in all day long (VFP and
Outlook, mostly). I’m more productive because
I’m not digging through stacks of windows and
constantly moving or resizing one window or
another.

However, one of the things I discovered fairly
soon after adding a second monitor is that some
of my applications didn’t respect it. For example, I
have a class called SFPersistentForm (discussed in
the January 2000 issue of FoxTalk, the predecessor
to FoxRockX) that I drop on most of my forms. It
saves the form size and position when the form is
closed and restores it when the form is reopened,
giving the user the experience they expect when
working with that form. However, I discovered
that if I opened a form and moved it to the second
monitor then closed it, when I reopened it, the
form displayed on the primary monitor instead
(this was a form with Desktop set to .T. so it can
exist outside the application’s window).

I quickly found out why: the persistence code
was trying to prevent the situation where the
form may open outside the screen boundaries,
making it invisible. The following code handled
that:

Thisform.Width = min(max(Thisform.Width, ;

 0, Thisform.MinWidth), _screen.Width)

Thisform.Height = min(max(Thisform.Height, ;

 0, Thisform.MinHeight), _screen.Height)

Thisform.Left = min(max(Thisform.Left, ;

 0), _screen.Width - 50)

Thisform.Top = min(max(Thisform.Top, ;

 0), _screen.Height - 50)

(“- 50” is used to ensure the form didn’t start
at exactly the right or bottom boundaries of the
monitor, making it essentially invisible.)

There are actually two problems with this
code. First, the reliance on _SCREEN assumed the

form exists within _SCREEN; with a top-level
form or one with Desktop set to .T., that’s not
necessarily the case. Second, even if _SCREEN is
maximized, that only fits it in the current monitor.
If the form is on the other monitor, _SCREEN’s
dimensions are irrelevant.

I initially changed the code to:

if Thisform.Desktop or Thisform.ShowWindow = 2

 lnWidth = sysmetric(1)

 lnHeight = sysmetric(2)

else

 lnWidth = _screen.Width

 lnHeight = _screen.Height

endif Thisform.Desktop ...

Thisform.Width = min(max(Thisform.Width, ;

 0, Thisform.MinWidth), lnWidth)

Thisform.Height = min(max(Thisform.Height, ;

 0, Thisform.MinHeight), lnHeight)

Thisform.Left = min(max(Thisform.Left, 0), ;

 lnWidth - 50)

Thisform.Top = min(max(Thisform.Top, 0), ;

 lnHeight - 50)

However, it turns out that SYSMETRIC() only
returns values for the primary monitor. So, I
created a tool for handling multiple monitors.

There are actually two classes, both of which
are in SFMonitors.prg: SFSize, which simply has
properties that represent the dimensions of a
monitor, and SFMonitors, which does the work.
SFMonitors is actually a subclass of SFSize
because it uses those same properties for the
virtual desktop (all combined monitors if there’s
more than one).

Here’s the code for SFSize:

define class SFSize as Custom

 nLeft = -1

 nRight = -1

 nTop = -1

 nBottom = -1

 nWidth = 0

 nHeight = 0

 function nLeft_Assign(tnValue)

 This.nLeft = tnValue

 This.SetWidth()

 endfunc

 function nRight_Assign(tnValue)

 This.nRight = tnValue

 This.SetWidth()

 endfunc

 function nTop_Assign(tnValue)

 This.nTop = tnValue

 This.SetHeight()

 endfunc

 function nBottom_Assign(tnValue)

 This.nBottom = tnValue

 This.SetHeight()

 endfunc

 function SetWidth

 with This

 .nWidth = .nRight - .nLeft

 endwith

 endfunc

 function SetHeight

 with This

 .nHeight = .nBottom - .nTop

 endwith

 endfunc

enddefine

SFMonitors has several methods. Init sets up
the Windows API functions we need, determines
how many monitors there are, and gets the
dimensions for the primary monitor if there’s only
one or the virtual desktop if there’s more than
one. (Note: this and the other methods discussed
use some constants, such as SM_CMONITORS,
which are defined at the start of the PRG.)

function Init

 local loSize

* Declare the Windows API functions we'll

* need.

 declare integer MonitorFromPoint ;

 in Win32API ;

 long x, long y, integer dwFlags

 declare integer GetMonitorInfo ;

 in Win32API ;

 integer hMonitor, string @lpmi

 declare integer SystemParametersInfo ;

 in Win32API ;

 integer uiAction, ;

 integer uiParam, string @pvParam, ;

 integer fWinIni

 declare integer GetSystemMetrics ;

 in Win32API integer nIndex

* Determine how many monitors there are. If

* there's only one, get its size. If there's

* more than one, get the size of the virtual

* desktop.

 with This

 .nMonitors = ;

 GetSystemMetrics(SM_CMONITORS)

 if .nMonitors = 1

 loSize = .GetPrimaryMonitorSize()

 .nRight = loSize.nRight

 .nBottom = loSize.nBottom

 store 0 to .nLeft, .nTop

 else

 .nLeft = ;

 GetSystemMetrics(SM_XVIRTUALSCREEN)

 .nTop = ;

 GetSystemMetrics(SM_YVIRTUALSCREEN)

 .nRight = ;

 GetSystemMetrics(SM_CXVIRTUALSCREEN) - ;

 abs(.nLeft)

 .nBottom = ;

 GetSystemMetrics(SM_CYVIRTUALSCREEN) - ;

 abs(.nTop)

 endif .nMonitors = 1

 endwith

endfunc

GetPrimaryMonitorSize returns an SFSize
object for the primary monitor. Note that this
takes into account the Windows Taskbar and any
other desktop toolbars, which reduce the size of
the available space.

function GetPrimaryMonitorSize

 local lcBuffer, ;

 loSize

 lcBuffer = replicate(chr(0), 16)

 SystemParametersInfo(SPI_GETWORKAREA, 0, ;

 @lcBuffer, 0)

 loSize = createobject('SFSize')

 with loSize

 .nLeft = ctobin(substr(lcBuffer, 1, ;

 4), '4RS')

.nTop = ctobin(substr(lcBuffer, 5, ;

 4), '4RS')

.nRight = ctobin(substr(lcBuffer, 9, ;

 4), '4RS')

.nBottom = ctobin(substr(lcBuffer, 13, ;

 4), '4RS')

 endwith

 return loSize

endfunc

Pass GetMonitorSize X and Y coordinates and
it figures out what monitor contains that point
and returns an SFSize object containing its
dimensions, again accounting for the Taskbar.

function GetMonitorSize(tnX, tnY)

 local loSize, ;

 lhMonitor, ;

 lcBuffer

 loSize = createobject('SFSize')

 lhMonitor = MonitorFromPoint(tnX, tnY, ;

 MONITOR_DEFAULTTONEAREST)

 if lHMonitor > 0

lcBuffer = bintoc(40, '4RS') + ;

 replicate(chr(0), 36)

 GetMonitorInfo(lhMonitor, @lcBuffer)

 with loSize

 .nLeft = ctobin(substr(lcBuffer, 21, ;

 4), '4RS')

 .nTop = ctobin(substr(lcBuffer, 25, ;

 4), '4RS')

 .nRight = ctobin(substr(lcBuffer, 29, ;

 4), '4RS')

 .nBottom = ctobin(substr(lcBuffer, 33, ;

 4), '4RS')

 endwith

 else

* Under some conditions, MonitorFromPoint

* returns a negative number, so let's use the

* primary monitor in that case.

 loSize = This.GetPrimaryMonitorSize()

 endif lHMonitor > 0

 return loSize

endfunc

Here’s some code taken from the Restore
method of SFPersistentForm (in SFPersist.vcx)
that uses SFMonitors. Code before the following
code (not shown here) reads a form’s previous
Height, Width, Top, and Left from the Windows
Registry from the last time the user had it open
into custom nHeight, nWidth, nTop, and nLeft
properties, and then sizes and moves the form
(referenced in loObject) to those values. This code

makes sure the form isn’t off the screen, which
can happen if, for example, the user had the form
open on a second monitor but now only has one
monitor, such as an undocked laptop. Note that
this code uses several SYSMETRIC() functions to
determine the height and width of the window
border and title bar, since those values aren’t
included in a form’s Height and Width. Also note
in the comment a workaround for a peculiarity
with an “in top-level form” being restored to a
different monitor than the top-level form it’s
associated with.

loMonitors = newobject('SFMonitors', ;

 'SFMonitors.prg')

* For desktop or dockable forms, get the size

* of the virtual desktop. If there's only one

* monitor, use the primary monitor size.

* Otherwise, use the size of whichever monitor

* the form is on.

if pemstatus(loObject, 'Desktop', 5) and ;

 (loObject.Dockable = 1 or ;

 loObject.Desktop or loObject.ShowWindow = 2)

 if loMonitors.nMonitors = 1

 loSize = loMonitors

 else

loSize = ;

 loMonitors.GetMonitorSize(.nLeft, .nTop)

 endif loMonitors.nMonitors = 1

 lnMaxLeft = loSize.nLeft

 lnMaxTop = loSize.nTop

 lnMaxWidth = loSize.nWidth

 lnMaxHeight = loSize.nHeight

 lnMaxRight = loSize.nRight

 lnMaxBottom = loSize.nBottom

* For any other forms, use the size of

* _screen.

else

 lnMaxLeft = 0

 lnMaxTop = 0

 lnMaxWidth = _screen.Width

 lnMaxHeight = _screen.Height

 lnMaxRight = lnMaxWidth

 lnMaxBottom = lnMaxHeight

endif pemstatus(loObject ...

* Test to see if the object is _screen.

_screen.Tag = sys(2015)

do case

* If we restored the properties, ensure the

* form isn't moved or sized outside the

* desktop boundaries. Only restore Height and

* Width if the form is resizable.

 case .WasItemRestored('Top') or ;

 .WasItemRestored('Left') or ;

.WasItemRestored('Height') or ;

 .WasItemRestored('Width')

 llTitleBar = pemstatus(loObject, ;

 'TitleBar', 5) and loObject.TitleBar = 1

lnBorderStyle = ;

 icase(pemstatus(loObject, ;

 'nBorderStyle', 5), ;

 loObject.nBorderStyle, ;

 pemstatus(loObject, 'BorderStyle', 5), ;

 loObject.BorderStyle, 0)

 if lnBorderStyle = 3

 loObject.Width = min(max(.nWidth, 0, ;

 loObject.MinWidth), lnMaxWidth)

 loObject.Height = min(max(.nHeight, 0, ;

 loObject.MinHeight), lnMaxHeight)

 endif lnBorderStyle = 3

* Calculate the total width of the form,

* including the window borders.

 if llTitleBar

 lnBorder = iif(lnBorderStyle = 3, ;

 sysmetric(3), sysmetric(12)) * 2

 else

 lnBorder = icase(lnBorderStyle = 0, 0, ;

 lnBorderStyle = 1, sysmetric(10), ;

 lnBorderStyle = 2, sysmetric(12), ;

 sysmetric(3)) * 2

 endif llTitleBar

 lnTotalWidth = loObject.Width + lnBorder

 do case

* If we're past the left edge, move it to the

* left edge.

 case .nLeft < lnMaxLeft

 loObject.Left = lnMaxLeft

* If we're past the right edge of the screen,

* move it to the right edge. We may also need

* to adjust the width to ensure it fits on the

* monitor. Only do this for a normal window;

* for maximized windows, we want to be at the

* former position.

 case ;

 .nWindowState = WINDOWSTATE_NORMAL and ;

 .nLeft + lnTotalWidth > lnMaxRight and ;

 not loObject.Tag == _screen.Tag

 loObject.Left = max(lnMaxRight - ;

 lnTotalWidth, lnMaxLeft)

 if loObject.Left + lnTotalWidth > ;

 lnMaxRight

 try

 loObject.Width = lnMaxRight - ;

 lnMaxLeft - lnBorder

 catch

 endtry

 endif loObject.Left ...

* We're cool, so put it where it was last

* time. If this form has ShowWindow set

* to 1-In Top-Level Form and the current top-

* level form is on a different monitor than

* the saved position, do this code twice; the

* first time, it gives a value that places the

* form on the wrong monitor but it works the

* second time.

 otherwise

 loObject.Left = .nLeft

 loObject.Left = .nLeft

 endcase

* Calculate the total height of the form,

* including the title bar and window borders.

 if llTitleBar

 lnVBorder = sysmetric(9) + ;

 iif(lnBorderStyle = 3, sysmetric(4), ;

 sysmetric(13)) * 2

 else

 lnVBorder = icase(lnBorderStyle = 0, ;

 0, ;

 lnBorderStyle = 1, sysmetric(11), ;

 lnBorderStyle = 2, sysmetric(13), ;

 sysmetric(4)) * 2

 endif llTitleBar

lnTotalHeight = loObject.Height + ;

 lnVBorder

 do case

* If we're past the top edge, move it to the

* top edge.

 case .nTop < lnMaxTop

 loObject.Top = lnMaxTop

* If we're past the bottom edge of the screen,

* move it to the bottom edge. Note that we

* have to account for the height of the title

* bar and top and bottom window frame. Only do

* this for a normal window; for maximized

* windows, we want to be at the former

* position.

 case ;

 .nWindowState = WINDOWSTATE_NORMAL and ;

 .nTop + lnTotalHeight > lnMaxBottom and ;

 not loObject.Tag == _screen.Tag

 loObject.Top = max(lnMaxBottom - ;

 lnTotalHeight, lnMaxTop)

 if loObject.Top + lnTotalHeight > ;

 lnMaxBottom

 try

 loObject.Height = lnMaxBottom - ;

 lnMaxTop - lnVBorder

 catch

 endtry

 endif loObject.Top ...

* We're cool, so put it where it was last

* time.

 otherwise

 loObject.Top = .nTop

 endcase

* Bind the window's Activate event to our

* SetWindowState method; we have to set

* the WindowState once the form is visible or

* it won't be maximized on the correct

* monitor.

 if .WasItemRestored('WindowState') and ;

 .nWindowState <> WINDOWSTATE_MINIMIZED

 bindevent(loObject, 'Activate', This, ;

 'SetWindowState')

 endif .WasItemRestored('WindowState') ...

* If we didn't, force the form to AutoCenter

* if we're supposed to.

 otherwise

 loObject.AutoCenter = loObject.AutoCenter

endcase

Trying it out
To test how this works, try the following:

 Run the Test form (Test.scx is included
with this article’s downloads). This form
has an SFPersistentForm object on it with
cKey set to
“Software\FoxRockX\TestForm”,
meaning its size and position is stored in
the Windows Registry in
HKEY_CURRENT_USER\Software\Fox
RockX\TestForm.

 Size it and move it somewhere, then close
it.

 Run the form again. Notice it opens at the
same size and position as it was when
you closed it.

 Move the form onto another monitor
(because it has Desktop = .T., you can
move it outside _SCREEN), then close it.

 Run the form again. Again notice it opens
where it was last time. Close it.

 Unplug the monitor, then run the form
again. This time it comes up on your
primary monitor.

To use this in your own applications, drop an
SFPersistentForm object on a form and set its
cKey property to the key under
HKEY_CURRENT_USER in the Registry where
you want its values saved. Note you’ll have to
add SFCtrls.vcx, SFRegistry.vcx, SFPersist.vcx,
and SFMonitors.prg to your project.

Summary
Now that you see how easy it is to persist form
size and location, you’ll likely become as annoyed
as I am with applications that don’t do this. These
classes make it simple to add this capability to any
of your forms.

Doug Hennig is a partner with Stonefield Software
Inc. He is the author of the award-winning Stonefield
Database Toolkit (SDT); the award-winning Stonefield
Query; the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “VFPX: Open Source Treasure
for the VFP Developer,” “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was
a Microsoft Most Valuable Professional (MVP) from
1996 to 2011. Doug was awarded the 2006 FoxPro

Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

	Handling Multiple Monitors
	Trying it out
	Summary

