
Anatomy of a VFPX Project

Doug Hennig
Stonefield Software Inc.

Email: doug@doughennig.com
Corporate Web sites: stonefieldquery.com

stonefieldsoftware.com
Personal Web site: DougHennig.com

Blog: DougHennig.BlogSpot.com
Twitter: DougHennig

Even if you haven’t considered contributing to a VFPX project (and you should), you may be
curious about what goes into such a project behind the scenes. This document delves into all
aspects of a VFPX project, including organization and deployment.

mailto:doug@doughennig.com
http://www.stonefieldquery.com/
file:///D:/Development/Writing/Sessions/DeployingVFPApps/www.stonefieldsoftware.com
http://www.doughennig.com/
http://doughennig.blogspot.com/
http://www.twitter.com/DougHennig

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 2 of 22

Introduction
Since its inception, VFPX has been an incredible resource for VFP developers. It provides
free, production-quality code from some of the best VFP developers on the planet over its
more than 130 separate projects. I personally use more than 30 of these projects in my
development environment and applications.

Maybe you have some code, or even just an idea, for a project you think other developers
could use. Maybe you have some ideas to improve an existing project. Maybe you’re just
interested in how VFPX works behind the scenes. This document discusses how VFPX is
organized, how to start a new project, and how to contribute to an existing project. It also
looks at some best practices for coding and documenting projects.

Introduction to VFPX
If you’re new to VFPX, this section is for you.

VFPX is located on GitHub, a Microsoft-owned site for Git repositories. Git is a distributed
version control system, or DVCS, that’s extremely popular with developers world-wide.
This document isn’t intended to be exhaustive documentation for Git or GitHub; there are
many sources of information on both, including https://docs.github.com. Fernando Bozzo,
who has contributed numerous VFPX projects, has some excellent Git information at
https://github.com/fdbozzo/git_training. Scott Hanselman’s blog post “The Squishy Side of
Open Source” (https://www.hanselman.com/blog/the-squishy-side-of-open-source) has
some good ideas for those new to open source.

Let’s start with GitHub, since you don’t actually need Git to work with any VFPX project.

GitHub

VFPX is located at https://github.com/vfpx. However, there isn’t much to see there: just a
list of repositories in reverse chronological order by last update. Also, it doesn’t show all
VFPX projects, only those under the VFPX GitHub account (we’ll see later that many
projects are not located there). A better URL is https://vfpx.github.io, the GitHub Pages site
for VFPX (GitHub Pages provide a web site for a project). However, the best URL is
http://vfpx.org, which always redirects to the current location of VFPX (not that the
location will be changing any time in the foreseeable future).

Thor, a VFPX tool (https://github.com/VFPX/Thor) for managing add-ons in
the VFP IDE, provides a way to get to the VFPX home page right from within
VFP: the VFPX Home Page item in the Thor menu.

Whichever way you get to it, the VFPX home page (Figure 1) is the first thing you see.

https://docs.github.com/
https://github.com/fdbozzo/git_training
https://www.hanselman.com/blog/the-squishy-side-of-open-source
https://github.com/vfpx
https://vfpx.github.io/
http://vfpx.org/
https://github.com/VFPX/Thor

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 3 of 22

Figure 1. The VFPX home page.

The home page describes what VFPX is, how to get involved, and how to promote it. It also
has a menu with the following items:

• Home: a link to the home page.

• Projects: a list of the projects including links to their repositories.

• License: the license all VFPX adhere to unless otherwise stated.

• Posts: news items about VFPX. There’s an RSS feed for this page (the “subscribe via
RSS” link at the bottom) so you’ll be notified when posts are added.

• Project Managers: information for project managers.

• Add a Project: information about how to add a project to VFPX.

• Admin: information for the VFPX administrators (our own documentation).

• About: lists the VFPX admins.

The Projects page (Figure 2) is the most used page: it lists the projects alphabetically and
shows a brief description, category (“Tool” means a utility that adds features to the VFP
Interactive Development Environment, or IDE, and “Component” means a utility that adds
features to your VFP applications), and status (Production, Release Candidate, Beta, Alpha,
and Planning). The page also lists some other VFP open-source projects that aren’t
considered to be part of VFPX. Click the name link to navigate to the repository for the
project.

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 4 of 22

Figure 2. The VFPX Projects page lists each project by name.

Thor provides a way to get to a specific project’s home page right from within VFP: choose
the Project Home Pages item in the Thor menu and click the desired project in the dialog
that appears. Note that only projects Thor knows about are listed in that dialog.

Some projects are hosted on GitHub under the VFPX organization
(https://github.com/VFPX/ProjectName) while others are under the author’s
repository (https://github.com/Author/ProjectName).

Figure 3 shows a typical VFPX project repository, in this case the one for the
XLXSWorkbook project. As this document is not intended to be complete GitHub
documentation, I won’t go through everything, just the most common features.

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 5 of 22

Figure 3. A typical VFPX project repository.

• You can get notification via email when the project is updated by clicking the Watch
button (#1 in Figure 3) and choosing the desired option. Note you must be logged in
with a GitHub account to turn on watching.

• To install the project on your system, you can either download the project as a zip
file or clone the repository; the latter requires Git be installed on your machine (#2
in Figure 3).

• The project’s README.md file is a Markdown file (Markdown is similar to HTML but
with simplified syntax) GitHub automatically renders on the page (#3 in Figure 3) so
it acts as the welcome page and in many cases, provides the documentation for the
project as well.

• The source list (#4 in Figure 3) shows the folders and files making up the project.
Some projects, such as this one, are just a zip file of source. Most, however, are
individual files, such as PRGs, SCXs, and so on. Click a file to view a page containing
its content (most binary files can’t be viewed, but some, such as PDFs can) and its
version history.

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 6 of 22

• To report a bug, ask a question, or make a feature request, click the Issues tab (#5 in
Figure 3) and create an issue. This is much preferred over sending an email to the
project manager or posting something on a forum because it allows other users to
see and comment on the issue as well.

If you’re used to posting issues or comments on the Thor or GoFish Google
Groups forums, be aware those forums are being deprecated. The preferred
locations going forward are the Issue tab for the Thor and GoFish GitHub
repositories.

Git

If you want to clone a project rather than just downloading it, you need to install Git. You
can get Git from a variety of sources.

• The main source for Git is at https://git-scm.com/downloads. Choose the Windows
version for VFPX projects.

• Git is basically a command-line utility, so there are numerous visual interfaces
available, including TortoiseGit (https://tortoisegit.org) and SourceTree
(https://www.sourcetreeapp.com). Some of these automatically install Git if it isn’t
already installed, while others require you install Git yourself.

• Some people like to use GitHub Desktop (https://desktop.github.com), which is a
visual interface for GitHub.

To clone a repository, open a command window somewhere and type:

git clone RepositoryURL folder

where RepositoryURL is the URL displayed when you click the Code button in the
repository and folder is the folder into which to clone the repository (the folder doesn’t
have to exist). Alternatively, you can use a visual tool to clone the repository. For example,
if you use TortoiseGit, you can simply right-click some folder in File Explorer, choose Git
Clone, and enter the URL and folder in the dialog that appears.

As I mentioned earlier, I’m not going to go into detail on how to use Git, as there are a lot of
resources available to learn Git.

Thor Check for Updates

Another way to install a project is by installing Thor and then using its Check for Updates
(CFU) function.

Not all projects support Thor CFU. It’s up to the project manager (or someone
else) to implement that. We’ll see how that’s done later.

Also, some projects use an older mechanism for supporting Thor CFU, so the

https://git-scm.com/downloads
https://tortoisegit.org/
https://www.sourcetreeapp.com/
https://desktop.github.com/

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 7 of 22

version number you see in the Thor CFU dialog may not match the one in the
project’s repository.

Here’s an overview of how Thor CFU works. For details, see
https://github.com/VFPX/Thor/blob/master/Docs/Thor_Check_For_Updates.md and
http://mattslay.com/how-thor-checks-and-distributes-new-versions-of-tools-in-foxpro/.

• Thor CFU downloads Updates.zip from the ThorUpdater folder of the Thor GitHub
repository and unzips it in the Thor\Tools\Updates subdirectory of your Thor
install folder.

• Thor CFU then runs the PRGs in that subdirectory to get information about each
project, mostly the URL for the file containing version information and the URL for
the zip file containing the project files.

• It checks to see if a project is installed, looking in either Thor\Tools\Apps or
Thor\Tools\Components, depending on whether the project is a “component” or an
“app,” and if so, compares the version number in its version file with the one
downloaded from the project’s repository.

• Thor CFU then displays the dialog shown in Figure 4.

• To install or update one or more projects, put a checkmark in the Update column
and click Install Updates. Thor CFU downloads the zip file for each project, unzips it
in the appropriate folder, and creates a text file containing the version number.

Figure 4. Thor's Check for Updates function can install and update many VFPX projects.

https://github.com/VFPX/Thor/blob/master/Docs/Thor_Check_For_Updates.md
http://mattslay.com/how-thor-checks-and-distributes-new-versions-of-tools-in-foxpro/

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 8 of 22

Starting a new project
Suppose you have an idea, or even better, some code, you want to add as a new project to
VFPX. To do that, submit a proposal to the VFPX admins. Don’t worry: you don’t have to
write a thesis; just answer a few questions about the project by filling in a Microsoft Word
document (Figure 5) and email it to the VFPX admins. See the instructions at
https://vfpx.github.io/newproject for details.

Figure 5. Fill out the VFPX Project Proposal and email it to the VFPX admins.

The VFPX admins will review the project and email you whether it’s approved or not.
Almost all projects are approved. The main reasons for a project not being approved is it’s
trivial (such as a small snippet of code) or it competes with a commercial product (such as
a web framework competing with West Wind Web Connection). Having your project
rejected doesn’t mean you can’t make it available to the world; you can create your own
GitHub repository, post a Dropbox link, or do whatever you wish. It just won’t appear in the
VFPX project list.

https://vfpx.github.io/newproject

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 9 of 22

Creating a local repository
The first step (besides creating the source code for the project) is to create a local
repository. If you prefer working from the command line, open a command window, CD to
the project folder, and type git init. Otherwise, use your preferred visual tool. For
example, I use TortoiseGit so I select the project folder in File Explorer, right-click, and
choose Git Create Repository Here.

The default branch for Git projects was “master” but that’s been supplanted
by “main” (see https://twitter.com/mislav/status/1270388510684598272
for background). If you wish to use “main” as the default for your projects,
open a command window and type:

git config --global init.defaultBranch main

Once you’ve created the repository, add some files to it. There are two types of files: those
making up the project itself (that is, the source code) and the files related to Git, GitHub,
deployment, documentation, and so on.

Project files

The repository obviously must include the source code for the project: PRGs, SCXs, VCXs,
PJXs, etc. You should exclude any files VFP generates, such as FXP, MPR, BAK, TBK, and
similar files; see the next section for a discussion of using a .gitignore file to automatically
specify which files to exclude.

You should create text equivalents of VFP binary files (SCX, VCX, PJX, DBF, etc.). The most
populate way is using FoxBin2PRG, a VFPX tool written by Fernando Bozzo and available at
https://github.com/fdbozzo/foxbin2prg. Include the text equivalent files (SC2, VC2, PJ2,
etc.) in the repository. The benefit of text equivalents is diffing tools such as those coming
with Git or a better tool such as Beyond Compare cannot diff binary files but they can diff
text equivalents, making it easy to identify changes between commits.

If you use the VFPX Deployment tool discussed in the Deployment section of
this document, you don’t have to manually create the text equivalents; the
tool does that for you as part of the deployment process.

Other files

In addition to the files for the project, other files should be included in the repository:

• README.md is the “home” page for the project. It’s automatically displayed when
the user navigates their browser to the URL for the project. We’ll discuss what
content it should have in the Documentation section of this document.

• CONTRIBUTING.md in the .github folder should have clear instructions about how
to help with the project. This is discussed in more detail in the Documentation
section of this document.

https://twitter.com/mislav/status/1270388510684598272
https://github.com/fdbozzo/foxbin2prg

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 10 of 22

• bug_report.md and feature_request.md in .github\ISSUE_TEMPLATE should be
templates for bug reports and feature requests.

• .gitignore should list files to exclude from the repository. Christof Wollenhaupt has
some example .gitignore files at https://github.com/cwollenhaupt/foxGitIgnore.

Normally I recommend excluding VFP binary files from the
repository, and Christof’s .gitignore file specifies that. The reason for
that recommendation is opening a binary file in VFP or recompiling
the project can change the timestamp on the file even if no changes
were made, so it’s difficult to tell which files were changed and which
were merely touched or recompiled. However, if you exclude binary
files, a developer cloning your project has to generate the binary files
from the text equivalents, and inexperienced developers may miss
that step and become frustrated when they can’t find the source code.
So, I suggest including VFP binaries in VFPX projects. The sample files
accompanying this document includes a modified version of Christof’s
.gitignore that does not exclude binary files.

• .gitattributes should specify to not alter line endings (that is, adjust line feeds to
carriage return/line feeds or vice versa). You can configure Git to not do that but
other developers may not have done that configuration, so it’s better to specify it at
the project level with a .gitattributes file.

• ChangeLog.md contains release notes for the project. We’ll discuss this in more
detail in the Documentation section of this document.

• We’ll discuss project documentation files in the Documentation section of this
document.

• We’ll discuss Thor Check for Updates files in the Deployment section of this
document.

The sample files accompanying this document includes a starter set of files you can use for
a new project.

Once all the files are in place, add them to the repository and commit. Using the command
line:

git add .
git commit -m "message"

Using TortoiseGit, I right-click the folder in File Explorer, choose Git Commit -> “main”,
click the All button to select all files, enter a commit message (the convention is “Initial
commit” for the first commit), and click Commit.

Creating a GitHub repository
One of the questions you have to answer in the project proposal is the repository location:
should it belong under VFPX (that is, https://github.com/VFPX/ProjectName) or your own

https://github.com/cwollenhaupt/foxGitIgnore

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 11 of 22

account (that is, https://github.com/YourName/ProjectName)? Although initially all
projects were under VFPX, the trend of late has been that new projects are under the
developer’s account. There are pros and cons to both approaches:

• The most obvious issue with the project being under VFPX is it’s not your
repository. VFPX admins can add you as a collaborator but ultimately they have
control over it.

• If the project’s repository is under the developer’s account and the developer is no
longer available, it’s more difficult for others to collaborate on the project. They can
fork the repository and issue pull requests (more about that later) but it’s possible
no one will merge them. Others can comment on issues, but no one may close them.
An example: Matt Slay sadly passed away and the repository for his GoFish and
Dynamic Forms projects are essentially locked. So, VFPX admins forked them and
changed the VFPX project list links to point to https://github.com/VFPX/GoFish and
https://github.com/VFPX/DynamicForms, respectively, rather than Matt’s
repositories.

If you decide the repository belongs under VFPX, a VFPX admin will create the repository
and add you as a collaborator. If it belongs under your account, create the repository on
GitHub:

• Navigate your browser to github.com and log into your account.

• On the Repositories tab, click New.

• Enter the repository name and description, make sure Public is selected, and click
Create Repository.

• Email the VFPX admins the URL for the repository.

In either case, the VFPX admins will add the project to the project list and create a short
post describing it.

https://vfpx.github.io, the GitHub Pages site for VFPX, is itself a GitHub
repository. The project list is data driven: it uses two JSON files in the _data
folder named projects.json (for VFPX projects) and nonvfpx.json (for other
projects) as the source of the items in the list. So, the VFPX admins simply add
a new record to projects.json (Figure 6), create a new Markdown file
describing the new project in the _posts folder, and commit and push to the
repository.

https://github.com/VFPX/GoFish
https://github.com/VFPX/DynamicForms
https://vfpx.github.io/

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 12 of 22

Figure 6. projects.json contains the list of VFPX projects.

The next step is to push from your local repository to GitHub. You can use the command
line if you wish:

git push -v --progress RepositoryURL main

Since I use TortoiseGit, I right-click the folder in File Explorer, choose Git Sync, click the
Manage button, enter the URL for the GitHub repository, click OK (this only needs to be
done the first time), and click Push.

Versioning
Versioning a project comes down to one thing: how does the user know how the version of
a project they have installed compares to the one on GitHub?

It seems like there are as many ways to provide versioning information for a project as
there are projects. Here are some ideas:

• Put the version number in a constant in an include file and use that constant where
you want the version number displayed. For example, PEM Editor uses
PEMEditorVersion.h, which has something like this:

 #define ccPEMEVERSION [PEM Editor - 7.41.08 - February 16, 2023 - 20230216]

ccPEMEVERSION is used in various places throughout the application to display the
version number in forms. When a new version is released, the person making
changes updates PEMEditorVersion.h and rebuilds the project.

• Put the version number into a property of a class. The SFMenu class in the OOP
Menu project has a cVersion property containing the current version number,
although it isn’t displayed anywhere.

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 13 of 22

• Use a major version number that changes with major releases and a minor version
number that changes with builds. I like to use the current date minus January 1,
2000 because that gives a number I can use to reverse engineer the release date if
necessary. For example, if I release a new build of version 1.0 of a project on
February 19, 2023, PADL(DATE() - DATE(2000, 1, 1), 5, '0') gives “08450” as the
minor version number, so the version number is 1.0.08450.

One thing to avoid is duplication: having a version number in code (include file, property,
etc.) and a separate one in the files used by Thor CFU, because it’s likely they’ll get out of
sync and then it’s hard to tell which is correct. We’ll look at a mechanism to handle that
when we discuss deployment.

Documentation
Ken Levy was famous for writing “self-documenting” code. However, he’s a genius. The rest
of us need documentation to properly use a project.

The first question to consider is what to document. As a minimum, the documentation
should include:

• The name of the project manager.

• The purpose of the project.

• The release date and version number of the latest release.

• Release history notes: release date, version number, and a list of the changes.

• Instructions on installation, use, and deployment (if applicable).

• Instructions on how to help with the project, especially how to release a new
version.

Documenting the internals of the project can provide useful information to other
developers who may work on the project (or even yourself a few years down the road).

The next question is the format of the documentation. Most GitHub projects use Markdown
files in the repository, but other choices are available:

• GitHub Pages: see https://github.blog/2016-08-22-publish-your-project-
documentation-with-github-pages for details.

• Repository Wiki: see https://docs.github.com/en/communities/documenting-your-
project-with-wikis/about-wikis and
https://gist.github.com/subfuzion/0d3f19c4f780a7d75ba2 for information on
using the Wiki included with the repository for documentation.

• Microsoft Word, PDF, and CHM: binary formats aren’t good choices, although I admit
my Project Explorer project uses a PDF file (generated from Word) because I haven’t
gotten around to converting it to Markdown.

https://github.blog/2016-08-22-publish-your-project-documentation-with-github-pages
https://github.blog/2016-08-22-publish-your-project-documentation-with-github-pages
https://docs.github.com/en/communities/documenting-your-project-with-wikis/about-wikis
https://docs.github.com/en/communities/documenting-your-project-with-wikis/about-wikis
https://gist.github.com/subfuzion/0d3f19c4f780a7d75ba2

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 14 of 22

Assuming you’re using Markdown files, the next question is where the documentation goes.
Some simple projects, such as Object Inspector, have all the documentation in README.md.
However, here’s a good design for documentation:

• README.md contains the name of the project, the project manager, a description of
the project (perhaps with screen shots to entice the user to investigate further), the
release date and version number of the latest release, and links to other documents
containing documentation, release notes, and how to help with the project. Note
GitHub runs on a Linux server, meaning it’s case-sensitive, so be sure to use the
correct case for all URLs and use a forward slash (/) rather than a backslash (\) for
paths.

• Images go in the images folder.

• ChangeLog.md contains release notes. It should include the project name and an
abbreviated project description (perhaps just a single sentence) because if your
project supports Thor CFU (discussed later), this appears in the Thor CFU dialog as
the project description. This file should go in the project folder rather than a
subdirectory (such as docs) so the VFPX Deployment tool (also discussed later) can
find it.

• Documentation Markdown files go in the docs folder. If there’s more than one
document, the one linked to by README.md should be an overview and table of
contents, with links to the other documents.

• Documentation on how to make and deploy changes to the project go in
CONTRIBUTING.md in the .github subdirectory. Figure 7 shows this page for the
Project Explorer project (https://github.com/DougHennig/ProjectExplorer). Note it
gives detailed steps about how to deploy changes made to the project.

Figure 7. CONTRIBUTING.md should have instructions about how to help with the project.

https://github.com/DougHennig/ProjectExplorer

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 15 of 22

Deployment
If you don’t want to support Thor CFU, deployment to GitHub is straightforward:

• Use FoxBin2PRG to create or update the text equivalents of VFP binary files.

• Commit your changes.

• Push to the remote repository.

However, supporting Thor CFU is a good choice because it not only makes the project
initially more visible (it automatically appears in the Thor CFU dialog), it also makes
notifying users when a new version is released simple and installing and updating an easy
operation for the user.

The best way to support Thor CFU is to use the VFPX Deployment tool. This tool itself
supports Thor CFU, so installing it is as simple as choosing Check for Updates from the Thor
menu, turn on the checkbox for VFPX Deployment, and clicking Install Updates. This adds a
“VFPX Project Deployment” item to the Thor Tools, Applications menu.

The documentation in the project repository (https://github.com/VFPX/VFPXDeployment)
has details on how to use it, but here’s an overview:

• The BuildProcess folder contains files specifying settings for the project, such as
current version number, and how VFPX Deployment should deploy it.

• The InstalledFiles folder is a staging area: VFPX Deployment zips the files in this
folder into ProjectName.zip in the ThorUpdater folder. This is the file Thor CFU
downloads and unzips.

• The ThorUpdater folder contains ProjectName.zip and ProjectNameVersion.txt, the
version files Thor CFU downloads to see if there’s a new version available.

BuildProcess contains the following:

• ProjectSettings.txt contains the project settings.

• VersionTemplate.txt is a template file used to generate ProjectNameVersion.txt.

• InstalledFiles.txt is an optional file listing which files to copy to the InstalledFiles
folder. If it doesn’t exist, you have to populate the InstalledFiles folder yourself.
Some projects, such as Object Explorer, use InstalledFiles as the source folder, so
there’s no need to copy anything.

• BuildMe.prg is an optional program containing additional code to customize the
deployment process.

One thing to keep in mind is to differentiate between what’s in repository (that is, needed
for someone working on the project) and what’s deployed with CFU (that is, what’s needed
to use the tool). For example, you don’t have to install README.md or any other Markdown
files, documentation, text equivalents, etc. If the project is delivered as an APP or EXE,

https://github.com/VFPX/VFPXDeployment

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 16 of 22

source code isn’t needed either. If someone wants to look at the source, read the
documentation, or make changes to the project, they can clone the repository or download
the source. That being said, there’s no harm in installing these files and many projects do.

Let’s look at an example. Listing 1 shows the content of ProjectSettings.txt for Project
Explorer.

Listing 1. ProjectSettings.txt for Project Explorer.

AppName = Project Explorer
AppID = ProjectExplorer
Version = 1.0
Component = No
ChangeLog = ChangeLog.md
PJXFile = projectexplorer.pjx

These settings tell VFPX Deployment to create files named ProjectExplorer.zip and
ProjectExplorerVersion.txt in ThorUpdater; the current version is 1.0; Thor CFU should
install this in the ProjectExplorer subdirectory of Thor\Tools\Apps because Component is
“No;” the content of ChangeLog.md should be included in ProjectExplorerVersion.txt; and it
generates text equivalents of the VFP binaries included in ProjectExplorer.pjx and rebuilds
ProjectExplorer.app from ProjectExplorer.pjx.

Listing 2 shows the content of InstalledFiles.txt. VFPX Deployment copies these files to the
InstalledFiles folder, preserving the folder structure. Notice source code is not included,
only the necessary files to run Project Explorer.

Listing 2. InstalledFiles.txt for Project Explorer.

ProjectExplorer.app
ProjectExplorerSettings.xml
system.app
Addins*.prg
Addins\template.txt
Addins\folder.png
Addins\Functions*.prg

I won’t show the content of VersionTemplate.txt because it’s created the first time VFPX
Deployment is used and I didn’t make any changes to it. There’s no BuildMe.prg.

When I want to deploy a new version of Project Explorer, I do the following:

• Make whatever changes are necessary and test.

• Change the version number in BuildProcess\ProjectSettings.txt.

• Edit ChangeLog.md to describe the changes.

• Choose VFPX Deployment from the Thor Tools, Applications menu.

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 17 of 22

After a moment, ProjectExplorer.zip and ProjectExplorerVersion.txt in ThorUpdater have
been updated, so I commit and push the changes to the repository. The next time someone
chooses Check for Updates from the Thor menu, they’ll see a new version of Project
Explorer is available.

Even if you use VFP Advanced, you must build APP files for VFPX projects
using VFP 9 because while VFP Advanced can run APP files created in VFP 9,
the opposite isn’t true, so users not using VFP Advanced wouldn’t be able to
use your APP file if you built it using VFP Advanced. VFPX Deployment
enforces this: if ProjectSettings.txt specifies building an APP or EXE file, it
gives a warning and terminates if you’re running VFP Advanced.

Testing Thor CFU

For a new project, there are two more, one-time steps: testing and adding to Thor CFU.

You should test your deployment on your own machine by doing the following:

• In the Thor\Tools\Updates subdirectory of your Thor install folder, create a My
Updates folder if it doesn’t already exist.

• Copy the Thor updater file VFPX Deployment generated, named
Thor_Update_ProjectName.prg in the BuildProcess folder of your project, to the My
Updates folder.

• Choose Check for Updates from the Thor menu. As Figure 8 shows, your project
appears in italics indicating it’s a “my update” update. (“Do Nothing” is a test project
I created.)

Figure 8. Your project appears in italics in the Thor CFU dialog.

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 18 of 22

Install the project and check the Thor\Tools\Components or Thor\Tools\Apps
subdirectory of your Thor install folder (depending on whether you set Component = Yes
or No in ProjectSettings.txt). Make sure all the necessary files are there and the version file,
named ProjectNameVersionFile.txt (specified in Thor_Update_ProjectName.prg), exists and
contains the correct version information. If you need to change anything, delete the project
folder under Thor\Tools\Components or Thor\Tools\Apps, make the necessary changes,
commit and push, and try Thor CFU again.

Once you’ve confirmed the Thor CFU process works, send Thor_Update_ProjectName.prg to
the VFPX admins at projects@vfpx.org (zip it or change the extension to TXT since
Microsoft Outlook blocks PRG attachments). They’ll add it to Thor (specifically, it’s included
in Updates.zip in the ThorUpdater folder of the Thor GitHub repository, as well as in the
Updaters\Updates folder for diffing purposes) so it’s available to other VFP developers
through Thor CFU.

Versioning

One thing to avoid is having the version number in more than one place. For example, the
SFMenu class in the OOP Menu project has a cVersion property. When I release a new
version, I change both that property and the version number in ProjectSettings.txt. If I
update one and forget to do the other, the version numbers are out of sync.

PEM Editor has a better approach. It uses a BuildMe.prg (Listing 3) for two reasons: since a
reference to it may be in memory, we need to release that before trying to build
PEMEditor.app, and we want to automate updating the version number so it isn’t a
forgotten step.

Listing 3. BuildMe.prg for PEM Editor automates updating the version number.

* Release references to PEMEditor.app since we'll be rebuilding it.

if type('_oPEMEditor') = 'O'
 _oPEMEditor.Release()
endif type('_oPEMEditor') = 'O'
release _oPEMEditor

* Update the version information in PEMEditorVersion.h.

text to lcVersion noshow textmerge
#define ccPEMEVERSION [PEM Editor - <<pcVersion>> - <<cmonth(pdVersionDate)>>
<<day(pdVersionDate)>>, <<year(pdVersionDate)>> - <<strtran(pcVersionDate, '-')>>]
endtext
strtofile(lcVersion, 'downloads\source\pemeditorversion.h')

As discussed earlier, PEMEditorVersion.h is one of the include files for PEM Editor source
code, so when VFPX Deployment builds the app, the updated version number is used.
pcVersion is a public variable containing the version number specified in
ProjectSettings.txt, pdVersionDate is a public variable containing the release date (today’s
date if it isn’t specified), and pcVersionDate is the text equivalent of pdVersionDate.

mailto:projects@vfpx.org

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 19 of 22

Contributing to a project
By “contributing,” I don’t mean financially but helping by writing or updating
documentation, fixing bugs, or adding enhancements. As discussed earlier, the project
should have detailed notes on how to contribute in CONTRIBUTING.md, which should be
linked to in README.md.

The way you contribute to a project is to fork the project to your own repository, make
whatever changes are necessary, and then creating a pull request. The project manager
reviews the pull request, may start a discussion about the changes with you, and once
satisfied, may merge the pull request into the repository. Let’s look at these steps.

Forking a project

To fork a project, click the Fork button on the project’s repository (Figure 9) to create a
new repository under your account. The default name for the new repository is the same as
the original but you can change it if you wish. After forking the project, clone its repository
to your machine.

Figure 9. Click the Fork button to fork a repository.

Making changes

Make the necessary changes to the project. (I’m not going to discuss creating and working
on a different branch here). Don’t forget to follow the instructions in CONTRIBUTING.md
for building, updating documentation, versioning, using VFPX Deployment if necessary, etc.

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 20 of 22

When the changes are done and tested, commit your changes and push to the fork
repository.

Creating a pull request

A pull request is a request to pull from a fork repository to the original repository and
merge the changes into the original. Navigate your browser to the fork repository, choose
the Pull Requests tab, and click New Pull Request (Figure 10). You can enter any comments
you wish about the pull request, then click Create Pull Request. You’ll notice the browser
navigates to the original repository; this confused me the first time because the repository
name was the same and I didn’t notice the account was different.

Figure 10. Click the New Pull Request button to create a pull request.

The admin for the original repository gets an email notifying them about the pull request.
They may start a conversion on the pull request, asking for more information or a
discussion about the changes, to which you can reply. There may be conflicts between your
changes and changes someone else made, so those conflicts must be resolved before they
can be merged.

Once the admins is ready, they can merge the changes into the repository by clicking Merge
Pull Request (Figure 11). After that, you can continue to make changes in your fork and
issue pull requests, or if you think that’s the only change you’ll make, you can delete your
fork repository. If you change your mind, you can recreate a fork.

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 21 of 22

Figure 11. The repository admin merges the changes from the fork by clicking Merge Pull Request.

Resources
If you’re interested in reading more about certain VFPX projects:

• The Technical Papers page of my personal web site has articles doing deep dives on
several VFPX projects, including Themed Controls, Dynamic Forms, and FoxCharts.

• The Articles page of Tamar Granor’s web site has several in-depth articles on Thor,
Object Inspector, and FastXTab.

• VFPX: Open Source Treasure for the VFP Developer is a little out of date but still a
great resource for many VFPX projects, especially its section on Thor.

There’s a ton of resources available for Git and GitHub. Some I’ve used are:

• GitHub documentation: https://docs.github.com.

• Fernando Bozzo, who has contributed numerous VFPX projects, has some excellent
Git information at https://github.com/fdbozzo/git_training.

• Scott Hanselman’s blog post “The Squishy Side of Open Source” has some good ideas
for those new to open source.

https://doughennig.com/papers.aspx
http://www.tomorrowssolutionsllc.com/
http://foxrockx.com/GetVFPX.htm
https://docs.github.com/
https://github.com/fdbozzo/git_training
https://www.hanselman.com/blog/the-squishy-side-of-open-source

Anatomy of a VFPX Project

Copyright 2023, Doug Hennig Page 22 of 22

Summary
I hope this document inspired you to contribute to VFPX, either by proposing your own
project or contributing to an existing one. Even if that’s not your thing, hopefully you can
use the ideas in this document with your own repositories.

Biography
Doug Hennig is a partner with Stonefield Software Inc. He is the author of the award-
winning Stonefield Query; the award-winning Stonefield Database Toolkit (SDT) (now
open source); the MemberData Editor, Anchor Editor, and CursorAdapter and
DataEnvironment builders that come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna. He also created several VFPX projects,
including Project Explorer, OOP Menu, OOP Reports, and SFMail.

Doug is co-author of VFPX: Open Source Treasure for the VFP Developer, Making Sense of
Sedna and SP2, Visual FoxPro Best Practices For The Next Ten Years, the What's New in
Visual FoxPro series, and Hacker's Guide to Visual FoxPro 7.0 (now open source). He was the
technical editor of Hacker's Guide to Visual FoxPro 6.0 and The Fundamentals. Doug wrote
hundreds of articles in 20 years for FoxRockX, FoxTalk, FoxPro Advisor, Advisor Guide to
Visual FoxPro, and CoDe magazines.

Doug spoke at every Microsoft FoxPro Developers Conference (DevCon) starting in 1997
and at user groups and developer conferences all over the world. He is one of the
organizers of the Southwest Fox and Virtual Fox Fest conferences. He is one of the
administrators for the VFPX VFP community extensions Web site. He was a Microsoft Most
Valuable Professional (MVP) from 1996 through 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award.

https://stonefieldquery.com/
https://github.com/DougHennig/StonefieldDatabaseToolkit
https://github.com/VFPX/MemberDataEditor
https://github.com/VFPX/Wizards
https://github.com/VFPX/Wizards
https://github.com/VFPX/Wizards
https://github.com/VFPX/My
https://github.com/VFPX/My
https://github.com/VFPX/UpsizingWizard
https://github.com/DougHennig/ProjectExplorer
https://github.com/VFPX/OOPMenu
https://github.com/VFPX/OOPReports
https://github.com/DougHennig/SFMail
http://foxrockx.com/GetVFPX.htm
http://hentzenwerke.com/catalog/vfpbp10.htm
http://hentzenwerke.com/catalog/wnvfp9.htm
http://hentzenwerke.com/catalog/wnvfp9.htm
https://hackfox.github.io/
http://hentzenwerke.com/catalog/hackfox6.htm
http://hentzenwerke.com/catalog/fund6.htm
http://www.foxrockx.com/
http://www.swfox.net/
https://virtualfoxfest.com/
http://vfpx.org/
http://fox.wikis.com/wc.dll?Wiki~FoxProCommunityLifetimeAchievementAward~Wiki
http://fox.wikis.com/wc.dll?Wiki~FoxProCommunityLifetimeAchievementAward~Wiki
http://www.hentzenwerke.com/catalog/hackfox7.htm
http://www.hentzenwerke.com/catalog/newin7.htm
http://www.hentzenwerke.com/catalog/wnvfp8.htm
http://www.hentzenwerke.com/catalog/wnvfp9.htm
http://www.hentzenwerke.com/catalog/vfpbp10.htm
http://www.hentzenwerke.com/catalog/makingsos.htm
http://www.stonefieldquery.com/sdt.html
http://www.stonefieldquery.com
http://vfpx.codeplex.com/
http://www.swfox.net
http://www.foxrockx.com/seite.htm

	Introduction
	Introduction to VFPX
	GitHub
	Git
	Thor Check for Updates

	Starting a new project
	Creating a local repository
	Project files
	Other files

	Creating a GitHub repository
	Versioning
	Documentation
	Deployment
	Testing Thor CFU
	Versioning

	Contributing to a project
	Forking a project
	Making changes
	Creating a pull request

	Resources
	Summary
	Biography

