
Spam, Wonderful Spam 
Doug Hennig 

 
This month’s article puts emailing on steroids. The tools presented here provide the ability to send 

bulk emails to anyone listed in a table. 

 

Last month, we looked at SFMAPI, a class that encapsulates the MAPI ActiveX controls that come with 

VFP. This class makes it easy to email-enable an application; you simply drop an SFMAPI object on a 

form, set some properties, specify recipients and attachments, and call the Send method to send a message. 

This month, we’ll look at some reusable tools that put emailing on steroids: they provide the basis for bulk 

emailing. Despite the provocative title for this article <g>, I’m not advocating spam; there are lots of 

legitimate reasons to send the same message to a group of people. For example, you may want to notify 

customers when a new version of a product is available, let friends and family know your new address when 

you move, etc. 

 There are a few components to the bulk mailing tool presented in this article: a mail table, a bulk 

mailing class, an email class (like SFMAPI), and a form or other object that coordinates things. 

 

Mail Table 
In this article, I refer to the table containing the addresses to email to in a bulk emailing the “mail table”. It 

could be a customer table that has an email address field, a cursor created from a SQL SELECT or view, 

etc. The name of the field containing the email address is unimportant, since you’ll specify the name in a 

property of the bulk mailing object we’ll see in a moment. The mailing object supports filtering this table, 

since you often don’t want to send a message to every record. 

 I like to keep track of which addresses were actually processed, so I include a “mail sent” field in the 

table. If such a field doesn’t exist in your table, you could add one by performing a SQL SELECT using 

code like this: 

 
select *, .T. as MAILSENT from CUSTOMERS into cursor MAILTABLE 

 

As with the email address, you’ll specify the name of this field in a property of the bulk mailing object. If 

this field exists, it will be set to .T. as a record is processed; if not, this step is simply ignored. One 

advantage for having such a field is if the bulk mailing process is stopped and started again for some reason; 

the bulk mailing object has some logic that allows it to start from where it left off if this field exists. 

 

SFMailer 
SFMailer (SFMAILER.VCX) is the bulk mailing class. It’s based on SFTimer, our timer base class in 

SFCTRLS.VCX. Why a timer? So emails can be sent as a background process. This allows the process to 

easily be stopped and started, which would be more difficult if it was running as a hard loop. The Enabled 

property of SFMailer is set to .F. so it doesn’t begin processing until told to, and the Interval is set to 1000 

(one second). 

 SFMailer doesn’t do the actual sending of a message; it uses an email object, referenced in its oMail 

property, to do the dirty work. An example of such an object is the SFMAPI class we looked at last month. 

Because different email objects have different interfaces (for example, the name of the property containing 

the email address), you have to subclass SFMailer to use a particular email object. 

 Because SFMailer may be used in an interactive environment, it has the ability to notify another object 

(such as a form) when its status changes, such as when another email has been sent. Store a reference to the 

“subscribing” object in the oNotify property. This object must have a UpdateStatus method, because 

SFMailer’s UpdateStatus method expects to call it. 

 Table 1 shows the custom properties in SFMailer. 

 
Property Purpose 
*cAddress The current email address 
cEmailAddressField The unaliased name of the field containing the email address (the default is 

“email”) 



cErrorMessage The error message if something went wrong (an assign method for this property 
makes it read-only to anything outside this class) 

cFilter The filter to apply to the mail table 
cMailAlias The alias of the table to do the emailing from 
cMessage The message contents 
cSentFlagField The unaliased name of the “mail sent” flag in the mail table (the default is 

“mailsent”; an access method for this property returns a blank if an invalid field 
name was specified) 

cSubject The message subject 
lProcessing .T. if we’re currently sending emails (an assign method for this property makes it 

read-only to anything outside this class) 
lResetSentFlag .T. to reset the “mail sent” flag in all records before starting 
nProcessed The number of records processed (an assign method for this property makes it 

read-only to anything outside this class) 
nRecords The number of records to process (an assign method for this property makes it 

read-only to anything outside this class) 
*oMail An reference to the mail object 
oNotify A reference to an object to be notified about status changes 

 

Table 1. Custom properties of SFMailer (* indicates protected). 

 

 The CountRecords method can be called once the cMailAlias, cFilter, cSentFlagField, and 

lResetSentFlag properties have been assigned the desired values. This method sets the nRecords property to 

the number of records in the mail table that meet the filter conditions specified in cFilter, and sets the 

nProcessed property to the number of records that have already been processed (if lResetSentFlag is .T., 

this is 0; otherwise, the number of those records that have the field specified in cSentFlagField set to .T.). 

This method calls the UpdateStatus method to notify the subscriber that the status has changed so, for 

example, a form can display the number of records to process. 

 
local lnSelect, ; 

  lcFilter 

with This 

 

* Ensure we have a mail table. 

 

  do case 

    case empty(.cMailAlias) or ; 

      vartype(.cMailAlias) <> 'C' 

      .cErrorMessage = 'cMailAlias not specified' 

      return .F. 

    case not used(.cMailAlias) 

      .cErrorMessage = .cMailAlias + ' is not open' 

      return .F. 

 endcase 

 

* Select the mail table and clear the filter. 

 

  lnSelect = select() 

  select (.cMailAlias) 

  set filter to 

 

* Count the total records matching the filter. 

 

  lcFilter = iif(empty(.cFilter), '.T.', ; 

    alltrim(.cFilter)) 

  count for &lcFilter to .nRecords 

 

* Count the records that've already been processed. 

 

  if .lResetSentFlag or empty(.cSentFlagField) 

    .nProcessed = 0 

  else 

    lcFilter = iif(empty(.cFilter), '', ; 

      '(' + alltrim(.cFilter) + ') and ') + ; 

      .cSentFlagField 

    count for &lcFilter to .nProcessed 

  endif .lResetSentFlag ... 



  .UpdateStatus() 

 

* Reselect the former workarea. 

 

  select (lnSelect) 

endwith 

 

 The StartMail method starts the mail process. It first ensures the table specified in the cMailAlias 

property is open and that the cEmailAddressField property contains a valid field name in that table. It calls 

the GetMailObject method (abstract since the mechanism of getting the object will vary depending on the 

type of email object used) to ensure we have an object that’ll handle the actual emailing for us, and flags all 

records as having not been sent if the lResetSentFlag property is .T. It then sets a filter on the mail table and 

moves to the first record matching the filter. Before returning, it sets the lProcessing flag to .T., calls the 

UpdateStatus method to notify any object that the status has changed, and starts the timer. 

 
local lnSelect, ; 

 lcSentFlag, ; 

 lcFilter 

with This 

 

* Ensure everything is set up correctly. 

 

  do case 

    case empty(.cMailAlias) or ; 

      vartype(.cMailAlias) <> 'C' 

      .cErrorMessage = 'cMailAlias not specified' 

      return .F. 

    case not used(.cMailAlias) 

      .cErrorMessage = .cMailAlias + ' is not open' 

      return .F. 

    case empty(.cEmailAddressField) or ; 

      not type(.cMailAlias + '.' + ; 

      .cEmailAddressField) $ 'CM' 

      .cErrorMessage = 'cEmailAddressField not ' + ; 

        'properly specified' 

      return .F. 

  endcase 

 

* Ensure we have a mail object. 

 

  .GetMailObject() 

  if vartype(.oMail) <> 'O' 

    .cErrorMessage = 'Could not create mail object.' 

    return .F. 

  endif vartype(.oMail) <> 'O' 

 

* Select the mail table. 

 

  lnSelect = select() 

  select (.cMailAlias) 

 

* Set the "mail sent" flag to .F. if necessary. 

 

  lcSentFlag = .cSentFlagField 

  if .lResetSentFlag and not empty(lcSentFlag) 

    replace all &lcSentFlag with .F. 

  endif .lResetSentFlag ... 

 

* Set a filter and go to the first record. 

 

  lcFilter = .cFilter 

  if not empty(lcSentFlag) 

    lcFilter = iif(empty(lcFilter), '', '(' + ; 

      lcFilter + ') and ') + 'not ' + lcSentFlag 

  endif not empty(lcSentFlag) 

  set filter to &lcFilter 

  locate 

 



* Flag that we're processing, update the status, 

* reselect the former workarea, and start the timer. 

 

  .lProcessing = .T. 

  .UpdateStatus() 

  select (lnSelect) 

  .Enabled = .T. 

endwith 

 

 Once the timer is enabled, the Timer method executes when the timer fires. This method calls the 

SendMail method if lProcessing is .T. or disables the timer if not. 

 
with This 

 

* If we're processing emails, send the next message. 

* Otherwise, stop the timer. 

 

  if .lProcessing 

    .SendMail() 

  else 

    .Enabled = .F. 

  endif .lProcessing 

endwith 

 

 The SendMail method processes the current record in the mail table. It gets the email address from the 

field specified in the cEmailAddressField and puts it into the cAddress property. If it isn’t empty, the timer 

is disabled so it doesn’t fire again while we’re processing this record, and the abstract SendMessage method 

is called (the reason this method is abstract is because the actual mechanism to send a message will vary 

with the mail object we’re using). The field specified in the cSentFlagField property is set to .T. (indicating 

that a message was sent to this address), the nProcessed property is incremented, and the UpdateStatus 

method is called to notify any object. Finally, the record pointer is moved to the next record, and if we’re at 

the end of the table, the StopMail method is called; otherwise, the timer is re-enabled. 

 
local lcSentFlag 

with This 

 

* Select the mail table. 

 

  lnSelect = select() 

  select (.cMailAlias) 

 

* Get the email address for the current record. If it 

* isn't empty, let's process it. 

 

  .cAddress = alltrim(evaluate(.cEmailAddressField)) 

  if not empty(.cAddress) 

 

* Disable the timer for this process and have the mail 

* object send the message. 

 

    .Enabled = .F. 

    .SendMessage() 

 endif not empty(.cAddress) 

 

* Update the "mail sent" flag. 

 

  lcSentFlag = .cSentFlagField 

  if not empty(lcSentFlag) 

    replace &lcSentFlag with .T. 

  endif not empty(lcSentFlag) 

 

* Increment the number of records processed and update 

* the status. 

 

  .nProcessed = .nProcessed + 1 

  .UpdateStatus() 

 



* Move to the next record. If we're at EOF, we're done. 

* Otherwise, reenable the timer. 

 

  if not eof() 

    skip 

  endif not eof() 

  select (lnSelect) 

  if eof(.cMailAlias) 

    .StopMail() 

  else 

    .Enabled = .T. 

  endif eof(.cMailAlias) 

endwith 

 

 The StopMail method simply terminates the processing by disabling the timer and setting the 

lProcessing property to .F. It also calls UpdateStatus to notify any object that the status has changed. This 

method is called from SendMail when the end of the mail table is reached, but could also be called from 

something else that wants to stop the process. 

 

SFMailerMAPI 
I created a subclass of SFMailer called SFMailerMAPI that uses an SFMAPI object to send a message. 

SFMailerMAPI overrides two methods: GetMailObject and SendMessage. GetMailObject grabs the 

SFMAPI object attached to the form it’s on if necessary and possible. 

 
with This 

  if vartype(.oMail) <> 'O' and ; 

    type('Thisform.Name') = 'C' 

    .oMail = Thisform.oMAPI 

  endif vartype(.oMail) <> 'O' ... 

endwith 

 

Of course, if you haven’t dropped the SFMailerMAPI object on a form or if that form doesn’t have an 

SFMAPI object called oMAPI, you’ll have to set the oMail property differently. 

 SendMessage uses the necessary properties and methods of the SFMAPI object to send a message (see 

last month’s article for details). 

 
with This.oMail 

  .NewMessage() 

  .cSubject = alltrim(This.cSubject) 

  .cMessage = alltrim(This.cMessage) 

  .AddRecipient(alltrim(This.cAddress)) 

  .Send() 

endwith 

 

Using SFMailer 
VSPRO.SCX (which stands for “Visual Spam Professional”; thanks to Mike Feltman for suggesting the 

name <g>) shows how to use SFMailer. As you can see, there are textboxes for the name of the mailer table, 

the name of a file containing the body of the message (you could also provide an editbox and type the 

message directly into the form), the subject of the message, and a filter to apply to the table. The “Send to 

All” checkbox is bound to Thisform.oMailer.lResetSentFlag, so the user can indicate whether it should 

process records already flagged as sent (the default when the form is started) or start from where it left off 

last time (the default after the process is stopped). The status area shows the number of records to process 

and the number processed (which come from the nRecords and nProcessed properties of the mailer object), 

and a ActiveX ProgressBar control shows the progress as it’s running. The Start button starts the process; 

its Caption becomes “Stop” while the process is running. 

 

Figure 1. VSPRO.SCX. 



 
 

 This form has cMailerClass and cMailerLibrary properties which specify which class to instantiate as 

the mailer object; I’ve set them to SFMailerMAPI and SFMailer.vcx. The Load method of the form 

instantiates the class specified in these properties as oMailer; this is done in Load rather than Init because 

several controls on the form are bound to properties of oMailer. Load also sets the oNotify property of the 

mailer object to This; the form’s UpdateStatus method will query various properties of the mailer object and 

display the status of the process (including setting the Caption of the Start button to “Stop” if the email 

process is currently running). The form also has an SFMAPI object on it (with the name oMAPI) so the 

SFMailerMAPI object can use it for sending messages. 

 If the emailing process isn’t running, the Click method of the Start button reads the contents of the 

specified message file into the cMessage property of the mailer object, then calls its StartMail method. If 

the process is running, the StopMail method is called. 

 
with Thisform 

  if This.Caption = 'Start' 

    .oMailer.cMessage = filetostr(.txtMessageFile.Value) 

    .oMailer.StartMail() 

  else 

    .oMailer.StopMail() 

    .oMailer.lResetSentFlag = .F. 

  endif This.Caption = 'Start' 

endwith 

 

 Other methods in the form are really just “glue” code to ensure that everything is set up correctly before 

the process can start. 

 

SFMailerwwIPStuff 
There are at least three drawbacks to using MAPI to send bulk emails: they’re send synchronously (so you 

have to wait for each message to be sent before the next one can be processed), each message appears in the 

Sent Folder of your email application (which you may think of as an advantage, depending on your needs) 

and, at least when you use Outlook Express as I do, you get a status dialog for each message. I prefer to use 

wwIPStuff, a shareware set of utilities from West Wind Technologies (see www.west-wind.com for details 

and a download file), because it avoids all three of these issues. 

 I created a subclass of SFMailer called SFMailerwwIPStuff that uses wwIPStuff to send messages. I 

added cMailServer, cSenderEmail, cSenderName, and cwwIPStuffDirectory properties (the first three 

contain information about your mail server and you, which aren’t need in SFMailerMAPI since they’re 

specified in your mail client, and the last specifies the directory where wwIPStuff is installed). The 



GetMailObject method instantiates a wwIPStuff object into the oMail property, and the SendMessage 

method sets the appropriate properties of oMail and calls its SendMailAsync method to send the message. 

 

Conclusion 
Although I joked about spam a couple of times in this article, I hope you’ll use these classes for legitimate 

purposes, such as client contact or employee e-newsletters. Don’t call me if your ISP shuts you down! 

 
Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Saskatchewan, Canada. He is the author or 

co-author of Stonefield’s add-on tools for FoxPro developers, including Stonefield Database Toolkit, Stonefield 

Query, and Stonefield Reports. He is also the author of “The Visual FoxPro Data Dictionary” in Pinnacle 

Publishing’s “The Pros Talk Visual FoxPro” series. Doug has spoken at the 1997, 1998, and 1999 Microsoft FoxPro 

Developers Conferences (DevCon) as well as user groups and regional conferences all over North America. He is a 

Microsoft Most Valuable Professional (MVP) and Microsoft Certified Professional (MCP). He can be reached at 

dhennig@stonefield.com. 

mailto:dhennig@stonefield.com

