

Developing Modern Interfaces

With VFP 7

Doug Hennig

Stonefield Systems Group Inc.

1112 Winnipeg Street, Suite 200

Regina, SK Canada S4R 1J6

Voice: 306-586-3341

Fax: 306-586-5080

Email: dhennig@stonefield.com

Web site: www.stonefield.com

Overview
VFP 7 introduces some new features that allow us to create applications with up-to-date

interfaces (such as that in Office 2000). However, there’s a lot more to creating an exciting

interface than just turning on “hot tracking”. In this document, you’ll learn how to create modern-

looking menus (complete with Most Recently Used features), toolbars (including command

buttons with drop-down menus), dialogs (using new Windows 2000 features), and forms. These

techniques will help you freshen the user interface of your applications to give them a longer

shelf life.

mailto:dhennig@stonefield.com
http://www.stonefield.com/

Introduction
It seems that every new version of Microsoft Office changes user interface standards. Whether

you like it or not, your users expect your applications to keep up with this ever-moving target.

Fortunately, VFP 7 adds new features that make it easier to create interfaces similar to Office

2000.

To help make your application look and behave more modern, we’ll look at shortcut menus, hot

tracking, toolbars, application menus, dialogs, and browser forms.

Shortcut Menus
Shortcut menus make it easier for a user to select a function because they don’t have to move the

mouse all the way to the menu bar and because the list of items in the shortcut menu is usually

context-sensitive, so they don’t have to figure out which functions are applicable right now.

Shortcut menus are one of the things that make an application look more professional.

Although there’s nothing new in VFP 7 for shortcut menus, we’ll discuss them first, because

they’re easily implemented using the classes I’ll show, and because some of the new features

we’ll discuss later will use these menu classes.

The FoxPro Foundation Classes (FFC) that come with VFP include a class named

_ShortcutMenu (in _MENU.VCX) that’s an object-oriented wrapper for VFP’s non-object-

oriented shortcut menu system. It’s one of the most useful classes in the FFC because it provides

a simple way to programmatically (and therefore dynamically) create shortcut menus. This class

has the following methods:

AddMenuBar: adds a new bar to the menu. You can specify the prompt and optionally the

code to execute when the bar is selected (if nothing is specified, the code in the

cOnSelection property is executed) or another menu object to display as a submenu, other

clauses for the bar (such as a SKIP FOR clause), the location of the bar in the menu,

whether the bar is marked or not, whether the bar is disabled or not, and whether the bar

appears in bold or not.

AddMenuSeparator: adds a separator bar to the menu.

ShowMenu: displays the menu, executes the appropriate action for the selected bar, and

then hides the menu.

ClearMenu: removes all bars from the menu.

NewMenu: instantiates another _ShortcutMenu object without having to use

CREATEOBJECT() or NEWOBJECT(). This is frequently used when a menu bar has a

submenu.

_ShortcutMenu is pretty good, but it has some limitations, the biggest of which is that the

parameters passed to AddMenuBar are static; they can’t be expressions evaluated when the menu

is displayed. This means that once you’ve defined a menu, you have to clear it and redefine all

the bars if you want to change its appearance in some way. So, I created SFShortcutMenu (in

SFMENU.VCX), which I use instead. Because of the way it was designed, it wasn’t feasible to

subclass _ShortcutMenu (that would’ve also added some baggage to any project using such a

subclass), so I stole, oops, I mean adapted, the code in _ShortcutMenu to create

SFShortcutMenu.

I like SFShortcutMenu so much that I added hooks for it in nearly every class in SFCTRLS.VCX

(my base class library). I added an oMenu property to contain an object reference to an

SFShortcutMenu object and an lUseFormShortcutMenu property, which contains .T. if the menu

of the form should be included in the menu for an object on that form. I made the Destroy

method set oMenu to NULL to avoid dangling object references. I added a ShowMenu method

(which is called from RightClick) that instantiates an SFShortcutMenu object, calls the custom

ShortcutMenu method to populate it, calls the ShortcutMenu method of a hooked object (if there

is one) to add to the menu, calls the ShortcutMenu method of the form the control is on (if there

is one and lUseFormShortcutMenu is .T.) to add to the menu, and finally displays the menu if it

has any bars. Here’s the code for ShowMenu:

private loObject, ;

 loHook, ;

 loForm

with This

* Define reference to objects we might have menu items

* from in case the action for a bar is to call a method

* of an object, which can't be done using "This.Method"

* since "This" isn't applicable in a menu.

 loObject = This

 loHook = .oHook

 loForm = Thisform

* Define the menu if it hasn't already been defined.

 if vartype(.oMenu) <> 'O'

 .oMenu = MakeObject('SFShortcutMenu', 'SFMENU.VCX')

 endif vartype(.oMenu) <> 'O'

 if vartype(.oMenu) = 'O'

* If there aren't any bars in the menu, have the

* ShortcutMenu method populate it.

 if .oMenu.nBarCount = 0

 .ShortcutMenu(.oMenu, 'loObject')

* Use the hook object (if there is one) to do any further

* population of the menu.

 if vartype(loHook) = 'O' and ;

 pemstatus(loHook, 'ShortcutMenu', 5)

 loHook.ShortcutMenu(.oMenu, 'loHook')

 endif vartype(loHook) = 'O' ...

* If desired, use the form's shortcut menu as well.

 if .lUseFormShortcutMenu and ;

 type('Thisform.Name') = 'C' and ;

 pemstatus(loForm, 'ShortcutMenu', 5)

 loForm.ShortcutMenu(.oMenu, 'loForm')

 endif .lUseFormShortcutMenu ...

 endif .oMenu.nBarCount = 0

* Activate the menu if necessary.

 if .oMenu.nBarCount > 0

 .oMenu.ShowMenu()

 endif .oMenu.nBarCount > 0

 endif vartype(.oMenu) = 'O' ...

endwith

Note the use of PRIVATE, rather than LOCAL, variables. They define references to objects in

case the action for a bar is to call a method of the object. You can’t do this using code like

“This.Method()” because “This” isn’t applicable in a menu. Instead, the object reference is put

into a variable and that variable is referenced; for example, “loObject.Method()”.

The ShortcutMenu method is used to actually fill the shortcut menu object with menu bars. It

accepts two parameters: an object reference to the menu object to populate and the name of the

variable containing the object reference to this object. Why pass the menu reference when it’s

stored in the oMenu property? Because we might want to hook several classes together,

populating the menu object of the first one. For example, you might want to have the shortcut

menu for a textbox include not only items for the textbox, but for the form it’s on as well. To do

that, set the lUseFormShortcutMenu property of the textbox to .T. The ShowMenu method of the

textbox will call the ShortcutMenu method of the form, passing a reference to the textbox’s

menu object and the name of the variable the textbox defined that references the form (loForm).

That way, the form can add its items to the textbox’s menu and everything will work.

In most classes, ShortcutMenu is an abstract method since I couldn’t think of any useful menu

choices that’d be used in every instance and subclass. Those that have a text component

(SFComboBox, SFEditBox, SFSpinner, and SFTextBox), however, have menu bars for Cut,

Copy, Paste, Clear, and Select All. Here’s the code from SFTextBox.ShortcutMenu:

lparameters toMenu, ;

 tcObject

with toMenu

 .AddMenuBar('Cu\<t', "sys(1500, '_MED_CUT', ;

 '_MEDIT')", , , , 'not ' + tcObject + ;

 '.Enabled or ' + tcObject + '.ReadOnly')

 .AddMenuBar('\<Copy', "sys(1500, '_MED_COPY', ;

 '_MEDIT')")

 .AddMenuBar('\<Paste', "sys(1500, '_MED_PASTE', ;

 '_MEDIT')", , , , 'not ' + tcObject + ;

 '.Enabled or ' + tcObject + '.ReadOnly')

 .AddMenuBar('Cle\<ar', "sys(1500, '_MED_CLEAR', ;

 '_MEDIT')", , , , 'not ' + tcObject + ;

 '.Enabled or ' + tcObject + '.ReadOnly')

 .AddMenuSeparator()

 .AddMenuBar('Se\<lect All', "sys(1500, '_MED_SLCTA', ;

 '_MEDIT')")

endwith

The sample CUSTOMERS form that accompanies this document has a shortcut menu with First,

Last, Next, and Previous functions. To show how the form’s menu can add to a control’s menu, I

set the lUseFormShortcutMenu property of txtCompany to .T. Right-click on that textbox and

you’ll see both the functions for textbox (Cut, Copy, Paste, Clear, and Select All) and those for

the form (First, Last, Next, and Previous) in the same menu. Here’s the code for the

ShortcutMenu method of this form:

lparameters toMenu, ;

 tcObject

with toMenu

 if .nBarCount > 0

 .AddMenuSeparator()

 endif .nBarCount > 0

 .AddMenuBar('First', tcObject + '.FirstRecord()')

 .AddMenuBar('Last', tcObject + '.LastRecord()')

 .AddMenuBar('Previous', tcObject + '.PreviousRecord()')

 .AddMenuBar('Next', tcObject + '.NextRecord()')

endwith

Notice that this code adds a separator bar to the menu if these functions are added to a control’s

menu, or not if the menu is strictly for the form.

Figure 1. The shortcut menu for the Company textbox includes functions for both the
textbox and the form.

Hot Tracking
Hot tracking means controls appear flat (rather than the 3-dimensional appearance we’re used to)

but change appearance as the mouse pointer moves over them. Most controls will then appear

sunken (the way they normally appear with hot tracking off), except for check boxes, option

buttons, and command buttons, which appear raised. For an example of hot tracking, look at the

toolbars in Microsoft Office 2000 applications. As you can see in Figure 2, toolbar controls

appear flat (for example, the command buttons have no outlines) until you move the mouse over

them (see the third button from the left).

Figure 2. Microsoft Office 2000 toolbars use hot tracking.

Hot tracking is easy to turn on in VFP 7: simply set the SpecialEffect property to 2 (for check

boxes and option buttons, you also have to set Style to 1-Graphical). For control classes that may

have to be used in earlier versions of VFP, you should set this property programmatically (such

as in the Init method) rather than in the Property Window to prevent an error when the control is

used in those versions. Here’s an example (taken from SFToolbarButton in SFBUTTON.VCX):

if clVFP7ORLATER

 This.SpecialEffect = 2

endif clVFP7ORLATER

clVFP7ORLATER is a constant defined in SFCTRLS.H, the include file for SFToolbarButton, as

follows:

#define clVFP7ORLATER (type('version(5)') <> 'U' and ;

 evaluate('version(5)') >= 700)

Since VERSION(5) was added in VFP 6, the TYPE() test and use of EVALUATE() in this

statement ensure it will work even in VFP 5.

To see an example of hot tracking for different types of controls, run

TESTHOTTRACKING.SCX and see what happens as you move the mouse over each control.

You can create other types of effects with code in the new MouseEnter and MouseLeave events.

For example, you can set This.FontBold = .T. in MouseEnter and This.FontBold = .F. in

MouseLeave to make a control appear bolded when the mouse is over it (that’s how the textbox

in TESTHOTTRACKING.SCX does its thing). You can also change the foreground or

background color, or do pretty much anything else you want in these events.

SwitchboardButton in MYCLASSES.VCX is an example. It’s used as a button in “switchboard”

forms, forms that provide quick access to the major functions of an application. In VFP 7, as the

user moves the mouse pointer around the form, the SwitchboardButton object under the mouse is

surrounded with a blue outline (see Figure 3 for an example). SwitchboardButton is actually a

container class with an image and a label. Its BorderColor is set to 0, 0, 255 (blue) and its Init

method sets the BorderWidth to 0 (it’s left at the default of 1 in the Property Window so you can

see it in the Class or Form Designers). The MouseEnter event sets BorderWidth to 3 and

MouseLeave sets it back to 0.

Figure 3. The SwitchboardButton class shows an example of hot tracking using
MouseEnter and MouseLeave.

Another example is the HyperlinkLabel class, also in MYCLASSES.VCX. The MouseEnter

event for this class sets This.ForeColor to 16711680 (blue) and This.FontUnderline to .T., and

MouseLeave restores them. This makes the label act like a hyperlink.

In addition to the SpecialEffect property and MouseEnter and MouseLeave events, command

buttons have a new VisualEffect property. This property, which is read-only at design time,

allows you to programmatically control the raised or sunken appearance of the control at run

time. Although you won’t often use this, it’s handy when several buttons should change

appearance as a group. We’ll see an example of that later.

Although you can use hot tracking wherever you want, I personally don’t care for hot tracking

except in controls in toolbars (none of the dialogs in Microsoft Office use hot tracking, for

example). So, rather than setting SpecialEffect to 2 in my base classes (those in

SFCTRLS.VCX), I’ll do it in specific subclasses that I use for toolbars, such as SFToolbarButton

in SFBUTTON.VCX.

Toolbars
Like other “modern” applications, toolbars in VFP 7 now have a vertical bar at the left edge

when docked to provide a visual anchor to grab to move or undock the toolbar (see Figure 1).

Another improvement related to toolbars is the addition of a Style property to the Separator base

class; setting this property to 1 makes a Separator appear as a vertical bar at run time (at design

time, Separators are still invisible, which is kind of annoying). As with hot tracking, you might

want to set this property programmatically to prevent problems with earlier versions of VFP; I

use the following code in the Init method of SFSeparator (in SFCTRLS.VCX):

if clVFP7ORLATER

 This.Style = 1

endif clVFP7ORLATER

Figure 4 shows the same toolbar running in VFP 6 and 7. The VFP 7 version looks and acts like

a toolbar in a more modern application.

Figure 4. The same toolbar in VFP 6 (left) and 7 (right).

A new style of toolbar button showing up in more and more applications is the dual button/menu

control. Figure 5 shows an example of such a button, taken from Internet Explorer 5.5. Clicking

on the left part of the control (the button with the image) causes an action to occur, while clicking

on the down arrow displays a drop down menu of choices. Another place I’ve seen such a control

used is in West Wind Technologies’ HTML Help Builder to open help projects. Clicking on the

button displays an Open File dialog while clicking on the down arrow displays a “most recently

used” (or MRU) list of files. The advantage of this control is that it doesn’t take up much screen

real estate, yet it can have a large list of choices.

Figure 5. Dual button/menu controls are becoming more popular.

SFBUTTON.VCX has a couple of classes used to create such a control.

SFDropDownMenuTrigger is a subclass of SFToolbarButton that’s sized appropriately and

displays a down arrow (Caption = “6”, FontName = “Webdings”, FontSize = 6). It also has

assign methods on its FontName and FontSize properties so they aren’t inadvertently changed

programmatically by something like SetAll(). SFDropDownMenuButton is based on

SFContainer, my container base class in SFCTRLS.VCX, and it contains an SFToolbarButton

object named cmdMain and an SFDropDownMenuTrigger object named cmdMenu. The

MouseEnter and MouseLeave events of each button set the VisualEffect property of the other

button to 1 and 0, respectively, so the hot tracking of the buttons is synchronized. The Click

event of cmdMain calls the ButtonClicked method of the container, which is empty since this is

an abstract class and the desired behavior must be coded in a subclass or instance. The

MouseDown event of cmdMenu has the following code to display the dropdown menu:

lparameters tnButton, ;

 tnShift, ;

 tnXCoord, ;

 tnYCoord

local loObject

with This

 do case

 case not clVFP7ORLATER

* If the menu was displayed and we clicked on this

* button again, re-enable the raised visual effect.

 case .VisualEffect = 0

 .VisualEffect = 1

 .Parent.cmdMain.VisualEffect = 1

 return

* Turn on the sunken visual effect.

 case .VisualEffect = 1

 .VisualEffect = 2

 endcase

* Display the menu.

 .Parent.lMenuActive = .T.

 .Parent.ShowMenu()

 .Parent.lMenuActive = .F.

* Turn off the visual effect for this button and the

* other one if the mouse isn't over this button (this

* prevents flicker if the user clicks this button again

* to hide the menu).

 if clVFP7ORLATER

 .VisualEffect = 0

 loObject = sys(1270)

 if vartype(loObject) <> 'O' or ;

 not loObject.Name == This.Name

 .Parent.cmdMain.VisualEffect = 0

 endif vartype(loObject) <> 'O' ...

 endif clVFP7ORLATER

endwith

Since SFContainer already has methods and code for handling shortcut menus (discussed earlier),

why reinvent the wheel? However, one issue SFDropDownMenuButton has to address that

SFContainer doesn’t is menu placement. SFShortcutMenu automatically places the menu at the

current mouse position, but if you look at Figure 5, you’ll notice the menu appears directly below

the control, aligned with its left edge. To support that, I added nRow and nCol properties to

SFShortcutMenu so you can control the position of the menu; if they contain 0, which they do by

default, SFShortcutMenu will figure out where the menu should go, so the former behavior is

maintained. The ShortcutMenu method of SFDropDownMenuButton, however, has to place the

menu at the right spot, so it calculates the appropriate values for the nRow and nCol properties.

What’s the right spot? That depends on if and where the toolbar hosting the control is docked. If

the toolbar is docked at the right or bottom edges, the menu has to be placed to the left or above

the control so it appears inside the VFP window. Otherwise, it has to be placed below and at the

left edge of the control. The code to perform these calculations is fairly long and complex (once

again, I adapted, okay, ripped off <g>, the code from NEWTBARS.VCX in the

SOLUTION\SEDONA subdirectory of the VFP samples directory), so it isn’t shown here.

To use SFDropDownMenuButton, drop it or a subclass on a toolbar. To see an example, look at

the instance named ColorPicker in the MyToolbar class in MYCLASSES.VCX, included with

this document. ColorPicker is just a simple demonstration of this control; it allows the user to

change the background color of the active form (or _SCREEN if there is no active form) from

either a pre-selected list of colors (the drop down menu) or a color dialog (when you click on the

button). The ButtonClicked method, called when the user clicks the button, displays a color

dialog and sets the background color of the active form or _SCREEN to the selected color:

local loObject

loObject = iif(type('_screen.ActiveForm.Name') = 'C', ;

 _screen.ActiveForm, _screen)

loObject.BackColor = getcolor(loObject.BackColor)

The ShortcutMenu method has the following code:

lparameters toMenu, ;

 tcObject

local lcObject

lcObject = iif(type('_screen.ActiveForm.Name') = 'C', ;

 '_screen.ActiveForm', '_screen')

toMenu.AddMenuBar('Red', lcObject + ;

 '.BackColor = rgb(255, 0, 0)')

toMenu.AddMenuBar('Green', lcObject + ;

 '.BackColor = rgb(0, 255, 0)')

toMenu.AddMenuBar('Blue', lcObject + ;

 '.BackColor = rgb(0, 0, 255)')

toMenu.AddMenuBar('Grey', lcObject + ;

 '.BackColor = rgb(212, 208, 200)')

dodefault(toMenu, tcObject)

Application Menus
Modern applications usually provide many different ways to perform the same action: main menu

selections, toolbar buttons, shortcut menu selections, and so on. We’ve already discussed

toolbars and shortcut menus, so let’s talk about the main menu.

Menus haven’t changed much in FoxPro since FoxPro 2.0. New in VFP 7, however, are the

abilities to specify pictures for bars (either the picture for a VFP system menu bar or a graphic

file) and to create inverted bars that only appear when the user clicks on a chevron at the bottom

of a menu popup (VFP calls inverted bars “MRU”, although the meaning of that term here is

different than you’d expect; in my opinion, they should’ve been called “adaptive” instead.) These

features allow us to create Office 2000-style menus.

Specifying a picture is easy. In the VFP Menu Designer, click on the button in the Options

column for a menu bar, and in the Prompt Options dialog, select File if you want to specify a

graphic file or Resource if you want to use the picture for a VFP system menu bar. If you select

File, you can either enter the name of the file in the picture textbox or click on the button beside

the textbox and select it from the Open File dialog. If you chose Resource, either enter the name

of the VFP system menu bar (for example, “_mfi_open”) or click on the button and select it from

the dialog showing the prompts of system menu bars. In either case, a preview of the picture is

shown in the Prompt Options dialog. The settings result in the PICTURE or PICTRES clauses

being added to the DEFINE BAR command that will ultimately be created for this bar.

The MRU feature is more difficult to use, and much more difficult to implement in a practical

manner. The DEFINE BAR command has new MRU and INVERT clauses, but because there are

no specific options for either clause in the Menu Designer, you end up having to use a trick: enter

“.F.” followed by either “MRU” or “INVERT” in the Skip For option for the bar. VFP 7’s menu

generator, GENMENU.PRG, is smart enough to see that you’re really use the Skip For setting as

a way of sneaking other clauses into the DEFINE BAR command that the generator will create,

so it leaves off the SKIP FOR .F. part of the command.

However, that’s only the beginning. You’re responsible for managing what happens when the

user selects the MRU bar (the chevron at the bottom of the menu) yourself. Typically, you’ll

remove the MRU bar from the menu and add bars with the INVERT clause to the menu, but

since the Menu Designer doesn’t create those bars for you, you have to code the DEFINE BAR

statements yourself (although you could create the desired bar in the Menu Designer, generate the

MPR file, copy the DEFINE BAR statement for the bar from the MPR, then remove it in the

Menu Designer). Also, once the user has selected one of the inverted bars, you have to add the

MRU bar back to the menu and remove the inverted bars, except perhaps the selected one, which

you may decide to leave in the menu as Office applications do, although then you have the

complication of changing it from an inverted bar to a normal one and not adding that bar the next

time the user selects the MRU bar, and then that’ll only last until the user exits the application.

See what I mean by “much more difficult to implement in a practical manner?”

I can’t think of any application I’ve written in the past 20 years that was complex enough to

actually use this type of adaptive menu. However, later we’ll look at a more useful, true MRU

feature.

One change many people have been hoping for for a long time is an object-oriented menu

system. There are several benefits for object-oriented menus. First, although it’d be extremely

rare for a menu to be reusable from one application to another, what about parts of a menu?

Individual bars or even entire pads could definitely be used in many applications. For example,

the bars in the Edit pad (Undo, Redo, Cut, Copy, Paste, Clear, and Select All) are usually the

same from application to application. Some bars in the Help pad (such as Help and About) and

File pad (such as Print Setup and Exit) would likely call the same functions in every application.

So, being able to reuse parts of a menu would be a time saver for many developers.

Another benefit of object-oriented menus is inheritance. You might have several bars that are

similar (for example, they may have the same SKIP FOR clause or even call the same function,

passing a parameter to indicate which one was chosen) but have different prompts. Wouldn’t it

be nice to create a new bar by subclassing an existing one and just changing the few things that

make it unique?

VFP 7 still doesn’t have object-oriented menus, so I created a set of classes that would provide

them.

How Menus Work in VFP

Before we look at the classes that implement an object-oriented menu, let’s review how menus

are handled in VFP. A menu bar appears below the title bar of an application. Although you can

define a menu bar using DEFINE MENU, most developers use the VFP system menu bar,

_MSYSMENU, because it’s easier and that’s what code generated by the Menu Designer does.

A menu bar consists of pads. A typical application has File, Edit, and Help pads at a minimum,

but Tools, View, and Window pads are also common. Pads are created with the DEFINE PAD

command. A pad has a prompt, a hot key (usually an Alt-key combination), a SKIP FOR clause

(which, when it evaluates to .T., disables the pad), and a message that appears in the status bar

when the pad is highlighted. Pads can have other properties, such as font and color, but these are

rarely used. You can specify what should happen when a pad is selected, but the standard

behavior is to display a popup.

As with pads, popups can have a number of properties specified with the DEFINE POPUP

command, but the two that are typically used are MARGIN, indicating that extra space is

available at the left margin of the popup so images or mark characters can be displayed, and

RELATIVE, which means that items in the popup appear in the order in which they’re defined.

Popups consist of bars, the items a user can select from the popup. A bar is created with the

DEFINE BAR command, and has a number of properties you can specify, including the prompt,

the hot key and the text representing the hot key that should appear to the right of the prompt, a

SKIP FOR clause, and a message that appears in the status bar when the bar is highlighted. As

with pads, other bar properties such as font and color are rarely used. VFP 7 adds several new bar

properties: the name of a file containing the image to display to the left of the bar’s prompt, the

name of a system menu bar whose image should be used for the bar, whether the bar should

appear inverted, and whether the bar should be an MRU bar. You specify what should happen

when the user selects a bar with the ON SELECTION BAR command.

Now let’s look at the classes that implement object-oriented menus. As I mentioned earlier, some

of the options VFP provides for menus are rarely if ever used. I decided when I created these

classes that I’d ignore options I never use or those that don’t follow Window standards (many of

these options are carry-overs from the DOS days). I also decided for simplicity to ignore

cascading menus for now (a cascading menu has bars that, when selected, display a subpopup of

choices). All the classes discussed in this article are located in SFMENU.VCX.

I’d like to give credit to my sources of inspiration (and, as usual, a bit of code <g>) for these

classes: the Visual FoxPro 3 Codebook by Yair Alan Griver (Sybex, ISBN 0-7821-1648-5) and

Visual FoxExpress from F1 Technologies (www.f1tech.com), written by Mike and Toni Feltman.

SFMenu

This class represents the menu bar. It’s a subclass of SFCollection, a class defined in

SFCOLLECTION.VCX that provides collection management (see my column in the July 1998

issue of FoxTalk for details on this SFCollection). SFMenu has only one custom property,

cInstanceName, which contains the name of the variable this class is instantiated into (we’ll see

why we need this later). Although it’s public, it has an assign method that makes it read-only to

everything except methods of this class. When you instantiate SFMenu, pass the name of the

variable as a parameter; the Init method sets cInstanceName to the parameter value. Here’s an

example:

loMenu = newobject('SFMenu', 'SFMenu.vcx', '', 'loMenu')

The AddPad method is used to add a new pad to the menu. Pass the class for the pad, the library

the class is contained in, and the name to assign to the pad; I suggest using the prompt with

“Pad” as the suffix for the name (for example, “FilePad”). The class is instantiated as a member

of SFMenu and is also added to the collection so pads can easily be enumerated. Here’s an

example that calls this method:

loMenu.AddPad('SFEditPad', 'SFMenu.vcx', 'EditPad')

You can now reference the new pad as loMenu.EditPad.

The Show method displays the menu. If no pads have been added to the menu, Show calls the

DefineMenu method. That method is an abstract method in this class, but in a subclass, you

could put a series of AddPad calls that add the desired pads to the menu; this makes the menu

subclass self-contained (no outside code has to add pads to the menu). The code then calls the

Show method of each pad in the menu and turns on menu handling. Here’s the code for Show:

local lnI, ;

 loPad

with This

 set sysmenu to

 if .Count = 0

 .DefineMenu()

 endif .Count = 0

 for lnI = 1 to .Count

 loPad = .Item(lnI)

 loPad.Show()

 next lnI

 set sysmenu automatic

endwith

The Refresh method refreshes the menu by activating it again; this is useful after you’ve

displayed the menu, and then changed some of the bars or pads in the menu. The

ReleaseMembers method, called when the object is destroyed (this is actually defined in

SFCustom, the parent class of SFCollection), restores the VFP system menu bar.

SFPad

SFPad is the parent class for all pads in a menu. It too is a subclass of SFCollection. Set the

cCaption property to the prompt for the pad (such as “File”), cKey to the hot key (such as

“Alt+F”), and cStatusBarText to the message to display in the status bar (such as “Performs file

functions”). You can also set cSkipFor to an expression that, when it evaluates to .T., disables the

pad, lVisible to .F. if the pad shouldn’t currently be visible (you can later set it to .T. to display

the pad), and lMRU to .T. if the pad should have an MRU bar in VFP 7 (this property is ignored

in VFP 6). Wait a minute: isn’t MRU a property of a bar instead of a pad? Yes, but if you look at

Office 2000, you’ll see that no pad’s popup has more than one MRU bar in it, and it’s always the

last bar. That means that really, MRU status should be a property of the pad (or popup) rather

than an individual bar. When lMRU is .T., SFPad will automatically create an MRU bar using

the class specified in the cMRUBarClass and cMRUBarLibrary (by default, “SFMRUBar” and

“SFMenu.vcx”, respectively).

Notice that in VFP menus, there’s no direct relationship between pads and bars. Instead, bars

belong to a popup and a popup is associated with a pad. I decided to simplify this in my design; I

really couldn’t see the need to expose popups at all (if you think about it, you’ll realize that’s

how the VFP Menu Designer works too). So, bars will belong to pads in this design. The Init

method automatically creates a popup and stores its name in the protected cPopupName property.

To add a bar to a pad, call the AddBar method, passing the class for the bar, the library the class

is contained in, the name to assign to the bar (I suggest concatenating the pad prompt, the bar

prompt, and “Bar” for the name, such as “FileExitBar”), and optionally the bar number (if you

don’t pass this, AddBar will automatically assign the next available bar number to it). The class

is instantiated as a member of SFPad and is also added to the collection so bars can easily be

enumerated. The Init method of the bar class is passed the name of the popup, the bar number,

and .T. if the bar number was specified or .F. if AddBar assigned it. Here’s an example that calls

AddBar:

loMenu.FilePad.AddBar('SFBar', 'SFMenu.vcx', 'FileOpenBar')

You can now reference the new bar as loMenu.FilePad.FileOpenBar. To add a separator bar, call

the AddSeparatorBar method (it doesn’t accept any parameters).

The Show method displays the pad, its popup, and the bars in the popup. If the pad hasn’t been

defined yet (the protected lDefined property is .F.), the Define method is called to define the pad

and create an MRU bar if the lMRU property is .T. Define also calls AddBars. That method is an

abstract method in this class, but in a subclass, you could put a series of AddBar calls that add the

desired bars to the pad; this makes the pad subclass self-contained. The Show method then calls

the either Show or Hide method of each bar in the pad (Hide if the bar is inverted, Show if not).

Since this method is called from the Show method of SFMenu, you probably won’t have to call

this method directly unless you call the Hide method (discussed next). Here’s the code for Show:

local lnI, ;

 loBar

with This

 if not .lDefined

 .Define()

 endif not .lDefined

 for lnI = 1 to .Count

 loBar = .Item(lnI)

 if loBar.lInvert

 loBar.Hide()

 else

 loBar.Show()

 endif loBar.lInvert

 next lnI

endwith

The Hide method releases the pad and popup that underlay this class, and sets the lVisible and

lDefined properties to .F. You can call this method to make a pad disappear, and then later call

Show to make it reappear. Alternatively, you can set lVisible to .F. and then later .T.; this

property has an assign method that calls either Hide or Show, depending on the value you’re

setting it to.

The MRUSelected method is public only because it’s called when the MRU bar belonging to the

pad is selected. Selecting an MRU bar causes all inverted bars to be displayed, so this method

starts by hiding the MRU bar and showing all inverted bars. It then reactivates the popup, and

after a selection has been made, redisplays the MRU bar and hides all inverted bars. Here’s the

code for this method:

local lnI, ;

 loBar, ;

 lcPopupName

with This

* Hide the MRU bar, then show all inverted bars.

 .MRUBar.Hide()

 for lnI = 1 to .Count

 loBar = .Item(lnI)

 if loBar.lInvert

 loBar.Show()

 endif loBar.lInvert

 next lnI

* Display the popup again.

 lcPopupName = .cPopupName

 activate popup &lcPopupName

* Now that the popup is closed, show the MRU bar and

* hide all inverted bars.

 .MRUBar.Show()

 for lnI = 1 to .Count

 loBar = .Item(lnI)

 if loBar.lInvert

 loBar.Hide()

 endif loBar.lInvert

 next lnI

endwith

Note that inverted bars are only displayed when the user selects the MRU bar, and are hidden

again afterward. Other applications that use this technology, such as Word and the Start menu in

Windows 2000, typically use a more complex behavior. For example, in Word, if you select an

inverted bar, it stays visible until you close the application. If you select the bar again and again

over time, it becomes more permanently visible. Bars that originally weren’t inverted may

become so if you don’t use them over time. Obviously, this requires a lot more bar management

than the classes I created will support!

The ReleaseMembers method, called when the object is destroyed, calls Hide to destroy the pad

and popup.

SFEditPad is a subclass of SFPad. Its AddBars method adds bars for Undo, Redo, Cut, Copy,

Paste, Clear, and Select All functions. I figured since every application has one of these pads,

why bother reinventing the wheel each time?

SFBar

SFBar is the parent class for all bars in a menu. It’s based on SFCustom (defined in

SFCTRLS.VCX), a subclass of the Custom base class. Set the cCaption property to the prompt

for the bar (such as “Open…”), cKey and cKeyText to the hot key and the text for it (such as

“Alt+F” for both), and cStatusBarText to the message to display in the status bar (such as “Open

a document”). If you want to use a VFP system bar, set cSystemBar to the name of the bar (for

example, the SFHelpTopicsBar subclass has cSystemBar set to “_MST_HPSCH” so it

automatically has the functionality of that system bar). To conditionally disable the bar, you can

either set cSkipFor to an expression or put code in the Allow method that returns .T. if the user is

allowed to select the bar. You can also set lEnabled to .F. to unconditionally disable the bar. Set

lVisible to .F. if the bar shouldn’t currently be visible (you can later set it to .T. to display the

bar). To display a mark (such as a checkmark) beside the bar, set lMarked to .T.

There are four ways you can define what happens when the user selects the bar: set

cActiveFormMethod to the name of the method of _screen.ActiveForm to call (such as “Find”;

you can specify parameters in parentheses if necessary), set cAppObjectMethod to the name of

the method of oApp to call (if you use an application object and it’s instantiated into a global

variable called oApp), set cOnClickCommand to the VFP command to execute, or put the code

to execute in the Click method of a subclass of SFBar.

In VFP 7, bars can have graphics; to use this feature, either set cPictureFile to the name of the

graphic file to use or cPictureResource to the name of the VFP system bar whose graphic you

want to use (for example, “_MFI_NEW” to use the image of the File New bar). VFP 7 also

supports inverted bars, so set lInvert to .T. to have the bar only visible when the MRU bar is

selected and to have it appear inverted. These properties are ignored in VFP 6.

You likely won’t need to call any SFBar methods directly. Show displays the bar by first calling

the protected FindBarPosition method if necessary (if the bar number was specified rather than

automatically assigned or if the bar is inverted, it may need to be placed between other bars, so

FindBarPosition figures out where it should go), and then calling the protected Define method to

set up and execute the DEFINE BAR and ON SELECTION BAR commands. The Hide method

releases the bar so it disappears from the menu.

By the way, the reason we need to know the name of the variable SFMenu is instantiated into is

the ON SELECTION BAR command. We can’t use code like “This.Click”, because “This” isn’t

available in the context of a menu selection. Instead, we need to use something like

“loMenu.FilePad.FileOpenBar.Click”. We can get “FilePad” from This.Parent.Name and

“FileOpenBar” from This.Name, but we can’t get “loMenu” from any native property. Thus, we

need to store the name of the variable the menu was instantiated into in SFMenu.cInstanceName.

Then, the entire path to the command to execute can be determined with:

This.Parent.Parent.cInstanceName + '.' + ;

 This.Parent.Name + '.' + This.Name + '.Click()'

I created a few commonly used subclasses of SFBar. SFHelpTopicsBar (discussed earlier)

provides a Help Topics bar. SFSeparatorBar is used when you call SFPad.AddSeparatorBar; it

simply has cCaption set to “\-”. SFMRUBar is the class used for an MRU bar when you set

SFPad.lMRU to .T.

Example: MAIN.PRG

MAIN.PRG is the startup program for a simple application that demonstrates the techniques

discussed in this document and the menu enhancements in VFP 7. Part of its code defines a menu

programmatically using the OOP menu classes. SFMenu is instantiated into the oMenu variable,

and it’s given two pads: File and Edit. The File pad’s lMRU property is set to .T. and an inverted

bar, Print Setup, and an associated separator bar are added between the Invoices and Exit bars.

When you run MAIN.PRG, you won’t see the Print Setup bar initially. Click on the MRU bar at

the bottom of the menu, and Print Setup appears. After you choose an item from the menu (other

than Exit, of course), Print Setup disappears again. The Print Setup and Exit bars have graphics

associated with them, via the values of the cPictureResource and cPictureFile properties. The

Edit pad has the usual bars (it’s an instance of the SFEditPad class).

Here’s the relevant code from MAIN.PRG:

oMenu = newobject('SFMenu', 'SFMenu.vcx', '', 'oMenu')

* Create the File pad.

oMenu.AddPad('SFPad', 'SFMenu.vcx', 'FilePad')

with oMenu.FilePad

 .cCaption = '\<File'

 .cKey = 'ALT+F'

 .cStatusBarText = 'Performs file functions'

 .lMRU = .T.

 .AddBar('SFBar', 'SFMenu.vcx', 'FileCustomers')

 with .FileCustomers

 .cCaption = '\<Customers'

 .cStatusBarText = 'Display the customers form'

 .cOnClickCommand = 'do form Customers'

 endwith

 .AddBar('SFBar', 'SFMenu.vcx', 'FileInvoices')

 with .FileInvoices

 .cCaption = '\<Invoices'

 .cStatusBarText = 'Open a file'

 .cOnClickCommand = [messagebox('You chose] + ;

 [File, Invoices')]

 endwith

 .AddBar('SFBar', 'SFMenu.vcx', 'FilePrintSetup')

 with .FilePrintSetup

 .cCaption = '\<Print Setup...'

 .cStatusBarText = 'Change the printer settings'

 .cOnClickCommand = 'sys(1037)'

 .lInvert = .T.

 .cPictureResource = '_mfi_sysprint'

 endwith

 loBar = .AddSeparatorBar()

 loBar.lInvert = .T.

 loBar.cBarPosition = 'before ' + ;

 transform(.FilePrintSetup.nBarNumber)

 .AddSeparatorBar()

 .AddBar('SFBar', 'SFMenu.vcx', 'FileExit')

 with .FileExit

 .cCaption = 'E\<xit'

 .cStatusBarText = 'Exit this application'

 .cOnClickCommand = 'ExitApp()'

 .cPictureFile = 'close.bmp'

 endwith

endwith

* Create the edit pad.

oMenu.AddPad('SFEditPad', 'SFMenu.vcx', 'EditPad')

* Display the menu.

oMenu.Show()

MRU Menus

A more useful version of an MRU feature is a list of things the user has accessed recently. Office

2000 applications use this: the bottom of the File menu shows a list of the most recently accessed

documents. Most VFP applications don’t use the concept of “documents”, but they do use

records. It might make sense in some applications to put the most recently accessed records at the

bottom of a menu so a user can quickly return to a record they were working with before. Rather

than automatically doing that, you might want to provide a function the user can select to add the

current record to the MRU list.

The sample application included with this document has an example of such a feature. First, a

button in the MyToolbar class, used as the toolbar for the customers form, allows the user to

“bookmark” the current record; it does so by calling the Bookmark method of the active form.

That method in CUSTOMERS.SCX has the following code:

lcCommand = [iif(type('_screen.ActiveForm.Name') =] + ;

 ['C' and _screen.ActiveForm.Name =] + ;

 ['frmCustomers', _screen.ActiveForm.Seek('] + ;

 CUSTOMER.CUST_ID + ['), oApp.DoForm('Customers] + ;

 [with "] + CUSTOMER.CUST_ID + ["'))]

lcCaption = trim(CUSTOMER.COMPANY)

oBookmark.AddBookmark(lcCommand, lcCaption)

This code expects that the Bookmark class, which we’ll look at in a moment, has been

instantiated into a global variable called oBookmark. The AddBookmark method of that class

expects two parameters: the command to execute when the bookmark is selected and the caption

for the bookmark. In this case, the command tells VFP that if the active form is the customers

form, call the Seek method of that form with the customer’s CUST_ID value (that method

positions the form to the specified key value); if there is no active form or it isn’t the customers

form, call the DoForm method of the application object, telling it to run the customers form and

passing the CUST_ID value (the Init method of the customers form accepts an optional

CUST_ID value and calls the Seek method if it’s passed). The company name is used as the

caption for the bookmark.

The Bookmark class, in MYCLASSES.VCX, is a simple class based on SFCustom. It has a two-

dimensional array called aBookmarks to store the bookmarks; the first column is the command to

execute and the second is the caption. The nMaxBookmarks property determines how many

bookmarks can be stored. The AddBookmark method adds a bookmark to the array and to the

bottom of the File menu. Here’s the code:

lparameters tcFunction, ;

 tcCaption

local lnRows, ;

 loSeparator, ;

 lcBar, ;

 loBar

* Find the next available slot for the bookmark. If we've

* exceeded the maximum number of bookmarks, exit.

with This

 lnRows = iif(empty(.aBookmarks[1]), 1, ;

 alen(.aBookmarks, 1) + 1)

 if lnRows > .nMaxBookmarks

 return .F.

 endif lnRows > .nMaxBookmarks

 dimension .aBookmarks[lnRows, 2]

 .aBookmarks[lnRows, 1] = tcFunction

 .aBookmarks[lnRows, 2] = tcCaption

endwith

* If this is the first slot, add a separator bar above

* the Exit bar in the File menu.

if lnRows = 1

 loSeparator = oMenu.FilePad.AddBar('SFSeparatorBar', ;

 'SFMenu.vcx', 'FileBookmarkSeparator')

 with loSeparator

 .cBarPosition = 'before ' + ;

 transform(oMenu.FilePad.FileExit.nBarNumber)

 .Show()

 endwith

else

 loSeparator = oMenu.FilePad.FileBookmarkSeparator

endif lnRows = 1

* Add the bookmark to the File menu above the separator

* bar.

lcBar = 'FileBookmark' + transform(lnRows)

loBar = oMenu.FilePad.AddBar('SFBar', 'SFMenu.vcx', ;

 lcBar)

with loBar

 .cCaption = '\<' + transform(lnRows) + ' ' + ;

 tcCaption

 .cOnClickCommand = tcFunction

 .cBarPosition = 'before ' + ;

 transform(loSeparator.nBarNumber)

 .Show()

endwith

Before the first bookmark is added to the File menu, a separator bar is added above the Exit bar.

Then, bars for the bookmarks are added above that separator. The cBarPosition property is used

to control the bar positions.

Figure 6 shows an example of the File menu after I bookmarked four records. Selecting a

bookmark opens the customers form (if necessary) and displays the chosen record.

Figure 6. Records are bookmarked near the bottom of the File menu.

The Bookmark class has a couple of other methods, SaveBookmarks and RestoreBookmarks,

that save and restore the bookmarks, using BOOKMARKS.DBF. These methods ensure the

user’s bookmarks are persistent between application sessions.

File and Folder Dialogs
GETDIR() displays a dialog in which the user can select a directory. This function isn’t used

often in a typical data entry application, but may be used, for example, in a configuration or

preferences dialog to specify where certain files should go.

In VFP 7, GETDIR() has three new parameters: cCaption, the caption of the dialog (the default is

“Browse for Folder”), nFlags to indicate the behavior of the dialog, and lRootOnly that allows

you to treat the starting directory as the root so the user can’t navigate above it. If any of the new

parameters are passed, this function uses the SHBrowseForFolder Windows API function, so the

dialog has the same user interface as other Windows applications.

The VFP Help topic for GETDIR() includes a list of some of the values for the nFlags parameter;

the SHBrowseForFolder topic in the MSDN Help file has a complete list. Like other functions

that support a similar parameter (such as the MESSAGEBOX() function), you can add together

different values to provide the behavior you want. Figure 6 shows an example that illustrates

Windows Explorer-like features by using flag value 64.

Figure 6. Adding 64 to the flags parameter of GETDIR() displays a dialog with features
similar to Windows Explorer, such as context menus.

I normally call GETDIR() from a button in a form. This button sits beside a textbox where the

user could type a directory path; the button makes it easier because they can simply navigate to

the desired directory in a GETDIR() dialog and choose OK. To easily implement such an

interface, I created SFGetDir (in SFBUTTON.VCX). SFGetDir has several custom properties,

including cResult (which contains the name of the place to put the directory the user selected,

such as the Value property of a textbox), cDefaultDir (the default directory; if it’s left empty, the

value of cResult is used as the default), cText (the text to display in the dialog), cCaption (the

caption for the dialog), lEditBox (.T. to display an editbox), lIncludeFiles (.T. to include files in

the list of folders), lUseNewUI (.T. to use Windows Explorer-like features), and cAfterDone (an

expression to evaluate after the dialog is closed; it can be used for validation, directory name

processing, etc.). The Click method of SFGetDir has the following code:

local lcResult, ;

 lcOptions, ;

 lnFlags, ;

 lcDir

with This

 assert not empty(.cResult) ;

 message 'SFGetDir: the result container was not ' + ;

 'defined.'

* Build a string of parameters from the properties of

* this object.

 lcResult = .cResult

 do case

 case empty(.cDefaultDir)

 lcOptions = evaluate(lcResult)

 case left(.cDefaultDir, 1) = '='

 lcOptions = '[' + ;

 evaluate(alltrim(substr(.cDefaultDir, 2))) + ']'

 otherwise

 lcOptions = alltrim(.cDefaultDir)

 endcase

 lcOptions = iif(empty(.cText), lcOptions, lcOptions + ;

 iif(empty(lcOptions), '[]', '') + ',[' + .cText + ;

 ']')

 do case

 case empty(.cCaption)

 case empty(lcOptions)

 lcOptions = '[],[],[' + .cCaption + ']'

 case not ',' $ lcOptions

 lcOptions = lcOptions + ',[],[' + .cCaption + ']'

 otherwise

 lcOptions = lcOptions + ',[' + .cCaption + ']'

 endcase

* In VFP 7 or later, support new options.

 if clVFP7ORLATER

 #define BIF_RETURNONLYFSDIRS 1

 #define BIF_EDITBOX 16

 #define BIF_VALIDATE 32

 #define BIF_USENEWUI 64

 #define BIF_BROWSEINCLUDEFILES 16384

 lnFlags = 0

 if .lEditBox

 lnFlags = lnFlags + BIF_EDITBOX + BIF_VALIDATE

 endif .lEditBox

 if .lIncludeFiles

 lnFlags = lnFlags + BIF_BROWSEINCLUDEFILES

 endif .lIncludeFiles

 if .lUseNewUI

 lnFlags = lnFlags + BIF_USENEWUI

 endif .lUseNewUI

 if lnFlags > 0

 lnFlags = lnFlags + BIF_RETURNONLYFSDIRS

 endif lnFlags > 0

 do case

 case lnFlags = 0

 case empty(lcOptions)

 lcOptions = '[],[],[],' + transform(lnFlags)

 case not ',' $ lcOptions

 lcOptions = lcOptions + ',[],[],' + ;

 transform(lnFlags)

 case occurs(',', lcOptions) = 1

 lcOptions = lcOptions + ',[],' + ;

 transform(lnFlags)

 otherwise

 lcOptions = lcOptions + ',' + ;

 transform(lnFlags)

 endcase

 endif clVFP7ORLATER

* Use the GETDIR() function, and if a directory was

* selected, store the result in the specified location.

 lcDir = getdir(&lcOptions)

 if not empty(lcDir)

 store lcDir to (lcResult)

 endif not empty(lcDir)

* If a method or function was specified to execute after

* GETDIR(), do it.

 if not empty(.cAfterDone)

 evaluate(.cAfterDone)

 endif not empty(.cAfterDone)

endwith

There’s nothing new in VFP 7 for the GETFILE() or PUTFILE() commands, but a new _ComDlg

class is included in the FFC (in _SYSTEM.VCX). Many people, including me, like to use the

Common Dialogs ActiveX control rather than GETFILE() and PUTFILE() because it has a lot

more control over the appearance and behavior of the dialogs (for example, you can specify a

default directory and suppress the Help and Codepage buttons if you wish) and it appears as a

more modern-looking dialog (see Figure 7). Now, you don’t have to include COMDLG32.OCX

(the file containing the Common Dialogs control) in the list of files installed on the user’s system

or worry about version issues and DLL hell. Instead, use _ComDlg. Rather than working with the

Common Dialogs control, it directly uses the Windows API functions that control is simply a

front for. See the “Common Dialog Box Foundation Class” topic in the VFP 7 help file for

details on using this class. Note that although this class comes with VFP 7, it works just fine in

VFP 6 as well.

Figure 7. The Common Dialogs control (bottom) looks more modern and provides more
programmatic control than the GETFILE() dialog (top).

As with GETDIR(), I created SFGetFile and SFPutFile classes (also in SFBUTTON.VCX) that I

can simply drop on a form and set some properties. Since these classes are similar, we’ll just look

at SFGetFile. Like SFGetDir, SFGetFile has cResult, cAfterDone, and cCaption properties to

define where the name of the selected file should be placed, what to do after a file has been

selected, and the caption of the dialog. Set the lUseCommonDialog property to .T. to use the

_ComDlg class or .F. to use GETFILE(). Put a semicolon-delimited list of file extensions (along

with their descriptions) into cExtensions. If lUseCommonDialog is .T., put the default directory

into cDefault. If not, put the desired text for the dialog into cText, the caption for the Open

button into cOpenButton, and the proper value into nButtonType (see the VFP help topic for

GETFILE() for a list of values). The Click method of SFGetFile has the following code:

local lcResult, ;

 loDialog, ;

 lcExt, ;

 laTypes[1], ;

 lnTypes, ;

 lnI, ;

 laExt[1], ;

 lcFile, ;

 lcCurDir, ;

 lcOptions

with This

 assert not empty(.cResult) ;

 message 'SFGetFile: the result container was ' + ;

 'not defined.'

* If we're using the CommonDialog control, instantiate

* the _ComDlg class, set its properties, and call the

* ShowDialog method.

 lcResult = .cResult

 if .lUseCommonDialog

 loDialog = MakeObject('_ComDlg', ;

 home() + 'FFC_System.vcx')

 if not empty(.cExtensions)

 lcExt = strtran(evaluate(.cExtensions), ';', ;

 chr(13))

 lnTypes = alines(laTypes, lcExt)

 loDialog.ClearFilters()

 for lnI = 1 to lnTypes

 lcExt = laTypes[lnI]

 if not ',' $ lcExt

 lcExt = lcExt + ',*.' + lcExt

 endif not ',' $ lcExt

 lcExt = strtran(lcExt, ',', chr(13))

 alines(laExt, lcExt)

 loDialog.AddFilter(laExt[1], laExt[2])

 next lnI

 endif not empty(.cExtensions)

 loDialog.cTitleBarText = .cCaption

 if not empty(.cDefault)

 loDialog.cFileName = alltrim(evaluate(.cDefault))

 endif not empty(.cDefault)

 lcCurDir = sys(5) + curdir()

 loDialog.lSaveDialog = .F.

 loDialog.ShowDialog()

 cd (lcCurDir)

 lcFile = addbs(loDialog.cFilePath) + ;

 loDialog.cFileTitle

 else

* We're using GETFILE(), so build a string of parameters

* from the properties of this object and call GETFILE().

 lcOptions = iif(empty(.cExtensions), "''", ;

 .cExtensions) + ',' + ;

 iif(empty(.cText), "''", "'" + .cText + "'") + ;

 ',' + ;

 iif(empty(.cOpenButton), "''", "'" + ;

 .cOpenButton + "'") + ',' + ;

 iif(empty(.nButtonType), '0', ;

 ltrim(str(.nButtonType))) + ;

 iif(empty(.cCaption), '', ",'" + .cCaption + "'")

 lcFile = getfile(&lcOptions)

 endif .lUseCommonDialog

* If the user chose a file, store the result in the

* specified location.

 if not empty(lcFile)

 store lcFile to (lcResult)

* If a method or function was specified to execute after

* file selection, do it.

 if not empty(.cAfterDone)

 evaluate(.cAfterDone)

 endif not empty(.cAfterDone)

 endif not empty(lcFile)

endwith

To see an example of SFGetDir and SFGetFile, run TESTDIALOGS.SCX.

Browser Forms
Much to the chagrin of the U.S. Justice Department <g>, Internet Explorer (IE) is a ubiquitous

application. However, the majority of its functionality isn’t in IE.EXE, but rather in the Microsoft

Web Browser ActiveX control. By dropping this control on a VFP form, you can display HTML

documents in VFP without worrying about all the baggage (or lack of programmatic control) that

comes with IE. You have to use a trick to get this to work properly in VFP: put NODEFAULT in

the Refresh method of the control. You can also use the _WebBrowser4 or _WebForm classes

that come with VFP (in GALLERY\WEBVIEW.VCX).

An obvious use of this control is to display reports or other information from HTML your

application generates. However, another use is as a navigation device, such as a switchboard

form. An advantage for using HTML for such a device is that is can easily be customized. For

example, you might have an Options dialog that allows your user to customize what functions

should appear in the switchboard. All you have to do is generate a new HTML file based on the

user’s choices and you’re done. You could even have a more advanced user or system

administrator update the HTML file directly (if you’re that brave <g>).

SWITCHBOARD.SCX is an example of such a form. It has a Microsoft Web Browser control

named oWebControl on it. The Init method sizes the control so it’s slightly larger than the form

so borders don’t show and automatically displays MENU.HTML:

with This.oWebControl

 .Top = -4

 .Left = -4

 .Height = This.Height + 6

 .Width = This.Width + 24

 .Navigate2('file://' + fullpath('Menu.html'))

endwith

MENU.HTML was created in FrontPage to display a switchboard form. It contains several

hyperlinks that display VFP forms. Wait a minute: how can the Web Browser control display a

VFP form? It can’t. Instead, when the user clicks on a link, the desired form is run. Here’s an

example of such a link in MENU.HTML:

Customers form

That looks like a normal hyperlink except it uses “VFPS://” and specifies what looks like VFP

code. How can the Web Browser deal with that? Actually, it can’t, but it doesn’t have to: we’ll

grab that before the Web Browser has a chance to do anything with it. The BeforeNavigate2

event of the control fires when a link is selected but before the control actually navigates to it.

Here’s the code I placed in that event:

LPARAMETERS pdisp, url, flags, targetframename, ;

 postdata, headers, cancel

if upper(URL) = 'VFPS://'

 lcAction = upper(strextract(URL, 'VFPS://', '/', 1, 3))

 Cancel = .T.

 &lcAction

endif upper(URL) = 'VFPS://'

This code checks to see if “VFPS://” exists in the URL to navigate to, and if so, extracts the VFP

command from the rest of the URL (notice it uses the new VFP 7 STREXTRACT() function,

which saves several lines of ugly string processing code), sets the Cancel parameter to .T. (since

it’s passed by reference rather than by value, setting it to .T. cancels the navigation request), and

then macro expands the command. In the case of the Customers Form link, the command is to

execute the same code that choosing the Customers function in the File pad does (doing it this

way rather than something like DO FORM CUSTOMERS means I don’t have to duplicate code

in several places, and then change all of those places when I need to change the code).

Tying it All Together
The sample application shows all of the techniques discussed in this article. DO MAIN to start

the application. MAIN.PRG instantiates some objects, including a simple application object and

the Bookmark class, and creates a menu for the application. It then runs the SWITCHBOARD2

form and issues a READ EVENTS. The only functions in the menu and switchboard that do

anything are Customers (which runs CUSTOMERS.SCX) and Exit.

The switchboard form uses the SwitchboardButton class mentioned earlier to show hot tracking.

The menu shows the use of MRU and inverted bars, includes pictures for some bars, and

demonstrates the use of most recently used (bookmarked) records. The customers form isn’t

fancy, but the toolbar it uses shows the SFDropDownMenuButton class (as a color picker),

includes a button to bookmark the current record, and demonstrates the new features of VFP 7

toolbars, including buttons with hot tracking and vertical separator bars. The form also shows the

use of shortcut menus.

To use the SWITCHBOARD form, which uses the Web Browser instead of SwitchboardButton

mechanism, change MAIN.PRG to DO FORM SWITCHBOARD instead of SWITCHBOARD2.

Summary
VFP 7 has several new features that make it easier to create applications that look and act like

Office 2000. Of course, Office XP raises the bar yet again, but for now, our applications can look

more modern than VFP 6 applications could.

Biography
Doug Hennig is a partner with Stonefield Systems Group Inc. He is the author of the award-

winning Stonefield Database Toolkit (SDT), co-author (along with Tamar Granor and Kevin

McNeish) of "What's New in Visual FoxPro 7.0" from Hentzenwerke Publishing, and author of

"The Visual FoxPro Data Dictionary" in Pinnacle Publishing's Pros Talk Visual FoxPro series.

He was the technical editor of "The Hacker's Guide to Visual FoxPro 6.0" and "The

Fundamentals", both from Hentzenwerke Publishing, Doug has spoken at every Microsoft

FoxPro Developers Conference (DevCon) since 1997 and at user groups and developer

conferences all over North America. He is a Microsoft Most Valuable Professional (MVP) and

Certified Professional (MCP).

