

Extending the VFP 9 Reporting

System, Part I: Design-Time

Doug Hennig

Stonefield Software Inc.

1112 Winnipeg Street, Suite 200

Regina, SK Canada S4R 1J6

Voice: 306-586-3341

Fax: 306-586-5080

Email: dhennig@stonefield.com

Web: www.stonefield.com

Web: www.stonefieldquery.com

Overview

Among the new and improved features in the reporting system of VFP 9 is the ability to extend

the Report Designer to provide easier-to-use, more powerful, and more flexible report writing to

your development team and even your end-users. In this document, you will learn about the new

Report Builder application, how it captures and handles events raised by the Report Designer,

and how you can create your own handlers to extend the VFP Report Designer in ways you never

thought possible.

mailto:dhennig@stonefield.com
http://www.stonefield.com/
http://www.stonefieldquery.com/

Introduction

One of the biggest changes in VFP 9 is the incredible improvements made in the reporting

system. There are several aspects to this, one of which we’ll explore in this document: the ability

to extend the Report Designer.

The VFP development team had several goals in mind when they worked on the design-time

improvements, including:

 Simplifying and improving the UI. In VFP 8 and earlier, there were a lot of dialogs related to

reporting. Some of them had somewhat unusual interfaces, and some spawned yet other

dialogs. You can see an example of the clunky interface when you double-click on a text

object: that action brings up a properties dialog for the object, but that dialog doesn’t allow

you to change the font or color of the object. In VFP 9, there are only a few dialogs, because

all of the properties for an object are now in one place.

 New features. Features such as report and object protection, DataEnvironment reuse, absolute

positioning, and design-time labels are now available in VFP 9.

 Extendible. VFP has always had a very extendible IDE, but VFP 9 blows the lid off

extensibility! You can now replace some or all Report Designer dialogs and completely

change both the UI and behavior of report events if you wish.

Design-Time Report Events

Earlier versions of VFP provided very little means of customizing the Report Designer, other

than perhaps the appearance of the window it appeared in. One of the design goals for VFP 9 is

to provide a mechanism to hook into the behavior of the Report Designer so its appearance and

behavior can be customized as much as possible. This was implemented by having events in the

Report Designer, such as opening a report or adding an object, passed to an Xbase component,

which can take any action necessary when events occur.

The new system variable _REPORTBUILDER points to an application (referred to in this

document as “the report builder application”) that receives notification about events from the

Report Designer. When a design-time report event occurs and _REPORTBUILDER points to an

existing application, the Report Designer creates a private data session and opens a copy of the

FRX currently being edited in that data session, then calls the report builder application. By

default, _REPORTBUILDER is set to ReportBuilder.APP in the VFP home directory, but you

can substitute another application if you wish. If you specify a non-existent application, no error

occurs but events are not raised in that case. Any application specified by _REPORTBUILDER

must be modal in nature because the Report Designer expects to call it and receive a return value

indicating what happened.

The Report Designer passes the following parameters to the report builder application when an

event occurs:

Parameter Type Description

ReturnFlags N Passed by reference with an initial value of -1. Used to return values to the
Report Designer.

EventType N An integer representing the event that occurred.

CommandClauses O An Empty object with properties indicating what clauses were used in the
CREATE/MODIFY REPORT command.

DesignerSessionID N The data session ID of the Report Designer.

ReturnFlags is used to return values back to the Report Designer. The possible return values are

shown in the table below, along with constants representing these values that may be defined in

FOXPRO.H in the release version of VFP 9. These values are bit flags that can be summed if

desired.

Value Constant Description

1 FRX_REPBLDR_HANDLE_EVENT The event has been handled by the report builder
application so the usual action the Report Designer would
normally is suppressed (sort of like using NODEFAULT).

2 FRX_REPBLDR_RELOAD_CHANGES The report builder application made changes in the FRX
cursor so the Report Designer should reload the changes
into its internal copy of the FRX.

EventType contains a value identifying the event that occurred. The possible values, along with

constants representing them and the type of event (a report event, an object event, or a band

event), are shown in the following table. The table also indicates whether the event can be

suppressed by adding 1 to the ReturnFlags parameter. “Must delete record” means that since a

newly-created object’s record has already been added to the FRX, to suppress the creation of an

object, you must delete its record in the FRX cursor and set the ReturnFlags parameter to 3 (the

event was handled and changes should be reloaded).

Value Constant Description Type Can

Suppress

1 FRX_BLDR_EVENT_PROPERTIES A Properties dialog (for the report,
a band, or an object) is being
invoked, either by double-clicking
or by a menu action.

Report,
Object,
Band

Yes

2 FRX_BLDR_EVENT_OBJECTCREATE An object or band is being
created.

Object,
Band

Yes (must
delete
record)

3 FRX_BLDR_EVENT_OBJECTCHANGE An object or band is being moved
or resized (although it looks like
this may only fire for bands).

Object,
Band

Yes

4 FRX_BLDR_EVENT_OBJECTREMOVE An object or band is being
removed.

Object,
Band

Yes

5 FRX_BLDR_EVENT_OBJECTPASTE One or more objects are being
pasted into the report from the
clipboard. This event is fired once
for each object being pasted.

Object Yes (must
delete
record)

6 FRX_BLDR_EVENT_REPORTSAVE The report is being saved. Report No

7 FRX_BLDR_EVENT_REPORTOPEN The report is being opened. Report No

8 FRX_BLDR_EVENT_REPORTCLOSE The report is being closed. Report Yes

9 FRX_BLDR_EVENT_DATAENV The data environment is being
opened.

Report Yes

10 FRX_BLDR_EVENT_PREVIEWMODE The report preview mode is being
invoked.

Report Yes

11 FRX_BLDR_EVENT_OPTIONALBANDS The Optional Bands dialog is
being invoked.

Report Yes

12 FRX_BLDR_EVENT_DATAGROUPING The Data Grouping dialog is
being invoked.

Report Yes

13 FRX_BLDR_EVENT_VARIABLES The Variables dialog is being
invoked.

Report Yes

14 FRX_BLDR_EVENT_EDITINPLACE Ctrl-E was pressed on a label
object.

Object Yes

15 FRX_BLDR_EVENT_SETGRIDSCALE The Grid Scale dialog is being
invoked.

Report Yes

16 FRX_BLDR_EVENT_OBJECTDROP One or more objects are being
created by a drag-and-drop
operation from the

Object Yes (must
delete
record)

DataEnvironment, a DBC, or the
Project Manager. This event fires
once for each object being
created, and if a label is created,
once for each label as well.

17 FRX_BLDR_EVENT_IMPORTDE “Load data environment” was
selected from the Report menu.

Report Yes

18 FRX_BLDR_EVENT_REPORT The report is to be printed. Report Yes

19 FRX_BLDR_EVENT_QUICKREPORT “Quick Report” was selected from
the Report menu.

Report Yes

CommandClauses has the properties shown in the following table.

Property Type Description

AddTableToDE L .T. if the Add Table to DataEnvironment option was turned on in the Quick Report
dialog.

Alias L .T. if the Add Alias option was turned on in the Quick Report dialog or the ALIAS
clause was specified in the CREATE REPORT FROM command.

FieldList O A collection of numeric field numbers representing the fields specified in the
Quick Report dialog or the FIELDS clause of the CREATE REPORT FROM
command.

File C The file name of the FRX open in the Report Designer. This file may not actually
exist if CREATE REPORT/LABEL was used.

Form L .T. if a form layout was chosen in the Quick Report dialog or the FORM clause
was specified in the CREATE REPORT FROM command; .F. if a column layout
was chosen or COLUMN was specified.

From C Contains the table name specified in the CREATE REPORT FROM command.

InScreen L .T. if the IN SCREEN clause was specified in the CREATE/MODIFY
REPORT/LABEL command.

InWindow C The name of the window specified in the IN <window> clause of the
CREATE/MODIFY REPORT/LABEL command.

IsCreate L .T. if the command was CREATE REPORT/LABEL or .F. for MODIFY

REPORT/LABEL.

IsReport L .T. if the command was CREATE/MODIFY REPORT or .F. if it’s
CREATE/MODIFY LABEL.

NoEnvironment L .T. if the NOENVIRONMENT clause was specified in the MODIFY
REPORT/LABEL command.

NoOverwrite L .T. if the NOOVERWRITE clause was specified in the CREATE REPORT FROM
command.

NoWait L .T. if the NOWAIT clause was specified in the CREATE/MODIFY
REPORT/LABEL command.

Protected L .T. if the PROTECTED clause was specified in the CREATE/MODIFY
REPORT/LABEL command.

Save L .T. if the SAVE clause was specified in the CREATE/MODIFY REPORT/LABEL
command.

Titles L .T. if the Titles option was turned on in the Quick Report dialog or the TITLES
clause was specified in the CREATE REPORT FROM command.

Width N The number of columns specified in the CREATE REPORT FROM command.

Window C The window name specified in the WINDOW <name> clause of the
CREATE/MODIFY REPORT/LABEL command.

The report builder application runs within a private datasession that contains the FRX cursor.

The Report Designer passes its own datasession ID to the report builder application in case it

needs to access the tables open in the DataEnvironment of the Report Designer.

The FRX cursor the Report Designer creates for the report builder application has the alias

“FRX”. The record pointer is on the record for the object the event occurs for; this may be the

report header record (the first record in the cursor) if it’s a report event rather than an object

event. The records for any objects selected in the Report Designer have the CURPOS field set to

.T. There’s one slight complication with this: since CURPOS is used by the report header record

to store the value of the Show Position setting, you should ignore this record when looking at

records with CURPOS set to .T. For example, to count the number of selected objects, use:

count for CURPOS and recno() > 1

ReportBuilder.APP

By default, _REPORTBUILDER is set to ReportBuilder.APP in the VFP home directory. This

application provides a framework for handling design-time report events, plus provides a new set

of more attractive and functional dialogs that replace the native ones used by the Report

Designer. ReportBuilder.APP can be distributed with your applications to provide its behavior in

a runtime environment.

In addition to being called automatically by the Report Designer, you can call ReportBuilder.APP

manually to change its behavior for the current VFP session (it doesn’t write settings to any

external location, such as a table, INI file, or the Windows Registry, so, with one exception we’ll

see in a moment, state isn’t preserved from session to session).

 If you call it with no parameters or pass it 1, it’ll display an options dialog in which you can

change the behavior of the report builder application. You can also right-click in the

Properties dialog and choose Options to launch the Options dialog.

 Pass 2 and optionally the name of an FRX file to browse a report.

 Pass 3 and the name of a DBF file to use as the handler registry (we’ll discuss this later).

 Pass 4 and a numeric value to set the “handle mode”. The numeric values match the buttons

in the When handling Report Designer events, the builder will setting shown in the

options dialog. For example, DO (_REPORTBUILDER) WITH 4, 3 tells ReportBuilder to

use the event inspector.

 Pass 5 and optionally the name and path of a file to create a copy of the internal handler

registry table (if you don’t pass the second parameter, you’ll be prompted for the table to

create).

The Options dialog has the following features:

 You can define what happens when ReportBuilder.APP receives a report event. The choices

are to search for a handler class in the handler registry table (the default behavior), use a

“debug” handler for events (displays a dialog showing the FRX in a grid and allowing

modifications to it and other settings), use an “event inspector” handler (displays information

about the event and the FRX in a MESSAGEBOX() window), or ignore report events.

 You can specify what handler registry table should be used, or make a copy of the internal

one (we’ll discuss the handler registry later). You can also browse the selected registry table.

There are several ways you can extend the functionality of the Report Designer.

 You can replace ReportBuilder.APP with your own report builder application by changing

_REPORTBUILDER.

 You can wrap ReportBuilder.APP by changing _REPORTBUILDER to your own application

and having your application call back to ReportBuilder.APP. For those of you who used

FoxPro 2.x, this may remind you of the GENSCRNX approach.

 You can register event handling objects in ReportBuilder.APP’s registry table. I suspect this

will be the most popular choice because ReportBuilder.APP provides a report builder

framework and lets you simply focus on handlers for report events.

Registering Report Event Handlers

If you want to create your own report event handlers that will be called by ReportBuilder.APP

when a report event fires, there are two steps required. The first is to create a class that

implements the desired behavior. It must have an Execute method that accepts an event object as

a parameter, because that’s what ReportBuilder.APP expects. The second is to register the

handler in ReportBuilder.APP’s handler registry table. We’ll look at the second task first, then

spend the rest of this document discussing the first.

When a report event occurs, ReportBuilder.APP looks in a handler registry table to find a handler

for the event. By default, it uses the handler registry table built into the APP file. This table

provides handlers for many report events so the new Xbase Report Designer dialogs are used

rather than the native ones. However, if you want to register your own handlers, you have to tell

ReportBuilder.APP to use a different handler registry table. There are several ways to do this:

 DO (_REPORTBUILDER) and click on the Create Copy button to write the internal handler

registry table to an external one. By default, this copy will be named ReportBuilder.DBF.

When ReportBuilder.APP starts, it looks for a table called ReportBuilder.DBF in the current

directory or VFP path. If it finds such a table, it uses that table rather than the internal one.

So, simply creating this copy means ReportBuilder.APP will use it without having to do

anything else.

 DO (_REPORTBUILDER) and click on the Choose button to select the table to use.

 As mentioned earlier, DO (_REPORTBUILDER) WITH 3, <DBF to use> to specify the

desired handler registry table without any UI.

Once you’ve specified an external handler registry table, you can manually add or edit records in

that table or, in the ReportBuilder.APP Options dialog, click on the Explore Registry button and

edit the records in the resulting dialog.

The handler registry table has the following structure:

Field Name Type Values Description

REC_TYPE C(1) E, F, G, H, or
X

Specifies the type of record (discussed later):

 H: report event handler record

 F: report event filter record

 X: exit handler record

 G: GetExpression wrapper record

 E: run-time extension editor class

HNDL_CLASS C(25) Class name.

HNDL_LIB C(25) Class library.

EVENTTYPE I 0 - 19 or -1 Report event type ID (-1 means any event).

OBJTYPE I 0 - 10 or -1 Report object type (-1 for any type).

OBJCODE I 0 - 26 or -1 Report object code (-1 for any code).

NATIVE L .T. or .F. .T. to force the report event to be passed back to the Report
Designer for native behavior.

DEBUG L .T. or .F. .T. to force the debug handler to be used for this event/object
combination.

FLTR_ORDR C(1) " ", "1", "2", .. For filters and exit handlers only, specifies the order in which
they are applied.

NOTES C(35) Not used by ReportBuilder.APP.

When a report event occurs, ReportBuilder.APP looks for the handler class to instantiate by

looking for a record where EVENTTYPE matches the report event ID (or is -1), OBJTYPE

matches the OBJTYPE column of the selected FRX record (or is -1), and OBJCODE matches the

OBJCODE column of the selected FRX record (or is -1). Because ReportBuilder.APP uses the

first handler record it finds that meets its conditions, you may need to delete or disable built-in

handlers if you wish to implement your own. One way you can disable a handler record without

deleting it is to change EVENTTYPE to an invalid value. I like to add 100 to EVENTTYPE to

disable a record because I can easily re-enable it by subtracting 100.

As you can see in the table, REC_TYPE registers different types of records. Here are the

different types available:

 A report event handler handles a report event.

 A report event filter is a class that gets an earlier crack at the report event than a handler does.

While only a single handler is instantiated, ReportBuilder.APP instantiates the classes

specified in all filter records, in FLTR_ORDER order, and calls their Execute methods. Upon

return from Execute, if any filter object’s AllowToContinue property is .F., no further

processing happens and the Report Designer is informed that the event has been handled.

As you can see from this description, although they can both respond to report events, there’s

a big difference between event handlers and filters:

 Filters are instantiated on every report event, while a handler is only instantiated for the

event it’s registered for in the handler registry table.

 All filters are instantiated on an event, while only a single handler is.

This means filters are good for the behavior you want to occur on multiple, possibly all,

events, while handlers are specific for one type of event.

 Exit handlers are similar to a combination of filters and event handlers in that after the other

processing is done, ReportBuilder.APP runs all registered exit handlers by instantiating the

appropriate classes, in FLTR_ORDER order, and calling their Execute methods. These

handlers are really just intended to perform any post-event cleanup behavior.

 GetExpression wrappers provide a wrapper or replacement for the GETEXPR dialog.

 Run-time extension editors replace the dialog displayed when you click on the Edit Settings

button for the Run-time Extension property in the Other page of the Properties dialog for an

object.

The Report Event Handling Process

When ReportBuilder.APP is called because a report event occurred, it does the following:

 Runs any registered filters as described earlier. Processing stops if any of them have

AllowToContinue set to .F.

 Tries to find the handler for the event using the following search pattern:

REC_TYPE="H", EVENTTYPE, OBJTYPE, OBJCODE

REC_TYPE="H", EVENTTYPE, OBJTYPE, -1

REC_TYPE="H", EVENTTYPE, -1, -1

REC_TYPE="H", -1, -1, -1

 If a handler is found, ReportBuilder.APP instantiates it and calls its Execute method. If no

handler is found, the event is passed back to the Report Designer and native behavior is used

instead.

 If a handler was found, ReportBuilder.APP runs all registered exit handlers as described

earlier.

Handler Interfaces

Report event filters, event handlers, exit handlers, GetExpression wrappers, and run-time

extension editors can be based on any class and have only a single required method. The method

signatures are:

 Filters: Execute(toEvent). ReportBuilder.APP passes this method a reference to an event

object, which we’ll look at later, with properties containing information about the event. To

prevent further processing, set the custom AllowToContinue property to .F. in this method; in

that case, the ReturnFlags property of the event object should be set appropriately.

 Event handlers: Execute(toEvent). This method also receives an event object. The return

value is not important, but the ReturnFlags property of the event object is.

 Exit handlers: Execute(). The return value is not important.

 GetExpression wrapper: GetExpression(tcDefaultExpr, tcDataType, tcCalledFrom, toEvent).

tcDefaultExpr is the default expression for the dialog and tcDataType is the data type of the

expression. tcCalledFrom indicates where this method was called from:

“PrintWhenExpression”, “FieldExpression”, “OLEBoundField”, “OLEBoundExpression”,

“BandGroupOnExpression”, “VariableValueToStore”, or “VariableInitialValue”. toEvent is

the same event object passed to other handlers. The return value is the expression.

 Run-time extension editors: same signature as event handlers.

Event Object

ReportBuilder.APP passes an event object to the methods of handlers. This object includes as

properties the parameters passed by the Report Designer to ReportBuilder.APP, plus some other

useful information.

Property Type Description

BuilderPath C Path of ReportBuilder.APP.

CommandClauses O The same CommandClauses object passed to ReportBuilder.APP from the
Report Designer.

DefaultRecno I The record pointer in the FRX cursor.

DefaultSessionID I The data session of the Report Designer (the fourth parameter passed in
from the Report Designer).

EventType I The event type (the second parameter passed in from the Report Designer).

FRXCursor O A helper object containing useful functions for interacting with the FRX
cursor.

FRXSessionID I The data session in which the FRX cursor is open (the default session when
the event handler is instantiated).

HandleMode I Indicates how ReportBuilder.APP handles events: 1 means search for a
handler class in the registry table, 2 means use the debug handler, 3 means
use the Event Inspector, and 4 means ignore builder events.

MultiSelect L .T. if multiple objects are selected in the Report Designer.

ObjCode I The value of the OBJCODE field of the selected record in the FRX cursor.

ObjType I The value of the OBJTYPE field of the selected record in the FRX cursor.

Protected L .T. if the Report Designer was launched with the PROTECTED keyword.

ReturnFlags I The value of this property is returned to the Report Designer in the first
parameter passed in from the Report Designer. It’s initially set to 1
(FRX_REPBLDR_HANDLE_EVENT); set it to 3
(FRX_REPBLDR_HANDLE_EVENT +
FRX_REPBLDR_RELOAD_CHANGES) if your class makes changes to the
FRX cursor that need to be reloaded into the layout.

SelectedObjectCount I The number of selected objects in the report layout, determined by counting
CURPOS = .T. in the FRX cursor (not counting the header record).

SessionData O A reference to a Name-Value pair manager object used to store data
between ReportBuilder.APP invocations.

UniqueID C The value of the UNIQUEID field of the selected record in the FRX cursor.

UnitConverter O A reference to an FRX unit converter object (the FRXUnitConverter class in
FRXBuilder.VCX built into ReportBuilder.APP). This class has methods to
convert between FRU (FoxPro Report Units, 1/10000 inch) and other units.

UsingInternalRegistry L .T. if the internal registry table is used.

It has several public methods; however, some are used by ReportBuilder.APP rather than an

event handler. The ones useful for an event handler are:

Method Parameters Returns Description

GetEventTypeText tiEvent C Returns the name of a given event type.

GetExpression tcDefaultExpr
[, tcDataType
[, tcCalledFrom
]]

C Displays a Get Expression dialog and returns the
selected expression.

GetExtensionEditor None O Returns a reference to an run-time extension editor
class as specified in the handler registry table.

GetTargetTypeText tiObjType,
tiObjCode

C Returns the name of a given object type/object code.
This actually just wraps the GetTargetTypeText()
method of the FRXCursor object.

SetHandledByBuilder tlNoDefault .T. Pass .T. to add 1 to ReturnFlags.

SetReloadChanges tlReload .T. Pass .T. to add 2 to ReturnFlags.

FRXCursor Helper Object

This object, referenced in the FRXCursor property of the event object, provides methods you

may find useful when working with an FRX.

Method Parameters Returns Description

BinStringToInt tcBytes N Returns the numeric equivalent of binary data
in a string of bytes.

BinToInt tcValue I Converts a binary string into an integer.

CreateBandCursor [tcFRXAlias] L Creates a cursor with the alias “Bands”
containing useful information about the bands
in the report.

CreateCalcResetOnCursor [tcFRXAlias] L Creates a cursor with the alias “Reset_On”
containing information for each option in the
Calculation Reset combobox.

CreateDefaultPrintEnvCursor [tcFRXAlias
[, tcDestAlias]]

L Creates a 1-record cursor named “DefPrnEnv”
with the same structure as the FRX, with the
default printer environment data loaded into
EXPR, TAG, and TAG2.

CreateGroupCursor [tcFRXAlias] L Creates a cursor with the alias “Groups”
containing useful information about the report
data grouping.

CreateMemberDataCursor [tcFRXAlias
[, tcMDAlias]]

L Creates a 1-record cursor of report
MemberData attributes, extracting and
converting the XML from the currently selected
FRX record’s STYLE field.

CreateObjectCursor [tcFRXAlias
[, tiOption]]

L Creates a cursor with the alias “Objects”
containing useful information about the layout
objects in the report. Calls

CreateBandCursor() if necessary. The values
for tiOption are:

0 (the default): all objects in the FRX, ignoring
grouped items

1: only selected (CURPOS = .T.) records

2: all objects, showing grouped items as single
record

3: grouped item breakdown

Some records may be deleted. Use SET
DELETED ON or manually ignore deleted
records.

CreateVariableCursor [tcFRXAlias] L Creates a cursor with the alias “Vars”
containing useful information about the report
variables defined in the report.

FRUToPixels tnFRU I Returns the corresponding pixels for a given
number of FRU (FoxPro Report Units, 1/10000
inch).

GetBandFor tcUniqueID
[, tlStart]

O Returns an object containing information about
the start or end band that surround the given
report object.

GetFRUTextHeight tcText,
tcTypeFace,
tiSize
[, tcStyle]

N Returns the height in FRU of given text and
font spec.

GetFRUTextWidth tcText,
tcTypeFace,
tiSize
[, tcStyle]

N Returns the width in FRU of a given text and
font spec.

GetFRXTimeStamp ttDateTime I Returns a FoxPro time stamp for a given
datetime.

GetObjectsInBand tcBandID [,
tlRecnos]

O Returns a collection of UNIQUEID values or
record numbers (depending on the value of
the second parameter) for each object
contained in the specified band.

GetReportAttribute tcAttrib
[, tiAlternate]

Value Returns a given attribute of the report header.
Some attributes have associated information
that can be obtained by passing an optional

second parameter of 1.

GetSelectedObjectCount None I Returns the number of currently selected
objects (CURPOS=.T.) in the FRX cursor.

GetTargetTypeText tiObjType,
tiObjCode

C Returns the name of a given object type/object
code.

GetTimeStampString tiTimeStamp C Converts a FoxPro time stamp into a readable
string.

HasBand tiObjCode L Returns .T. if the report contains a band of the
given type.

HasDetailHeader tcDetailBandID L Returns .T. if the specified detail band record
has an associated detail header record.

HasProtectionFlag tcBytes, tiFlag L Returns .T. if the given binary data (bytes) has
a specific protection flag set.

InsertBand tiObjCode - Inserts a band of a given type into the FRX
cursor. Assumes the FRX cursor is selected
and is positioned to the correct location for an
insert.

InsertDetailBand None - Inserts a Detail band record into the FRX
cursor. Assumes the FRX cursor is selected
and is positioned to the appropriate record to
have the detail record inserted.

InsertDetailHeaderFooter None - Inserts Detail Header/Footer records into the
FRX cursor. Assumes the FRX cursor is
selected, is positioned to the detail band
record to have Header/Footer records added
to it, and that the detail band doesn’t already
have header/footer records.

InsertSummaryBand tlNewPage,
tlPageHeader,
tlPageFooter

- Inserts a Summary band into the FRX cursor.
Assumes the FRX cursor is selected and
doesn’t already have a Summary band.

InsertTitleBand tlNewPage - Inserts a Title band into the FRX cursor.
Assumes the FRX cursor is selected and
doesn’t already have a Title band.

IntToBin tiValue C Converts an integer into a binary string.

IntToBinString tiValue C Returns a string of bytes of the binary version
of an integer.

PixelsToFRU tnPixels N Returns the corresponding FRU for a given
number of pixels.

StoreMemberDataCursor [tcFRXAlias
[, tcMDAlias]]

L Takes a 1-record cursor of report MemberData
attributes, converts the attributes in the
MemberData XML, and stores it in the
currently selected FRX record’s STYLE field.

SynchObjectPositions None L Resets non-deleted objects in the FRX relative
to the start of the band they are in. Assumes
Bands and Objects cursors have been
created, current selected table is the FRX
cursor, and does not need to restore the
record pointer.

Creating Report Event Handlers

Because most report event handlers will have common requirements, I created a base class

handler called SFReportEventHandler (a subclass of SFCustom, my Custom base class defined in

SFCtrls.VCX), defined in SFReportBuilder.VCX. Its Init method instantiates an

SFReportEventUtilities object into the oUtilities property. Like FRXCursor, this object has utility

methods for dealing with report objects and events.

The Execute method of SFReportEventHandler saves the passed-in event object to its oEvent

property and the oEvent property of the SFReportEventUtilities object, then calls the OnExecute

method, which is abstract in this class. In a subclass, I won’t override the Execute method, but

will instead put the appropriate code into the OnExecute method.

lparameters toEvent

with This

 .oEvent = toEvent

 .oUtilities.oEvent = toEvent

 .OnExecute()

 .oEvent = .NULL.

 .oUtilities.oEvent = .NULL.

endwith

To handle a particular report event, create a subclass of SFReportHandler and register it in the

handler registry table. To make it easy to do the latter, I created a program called

InstallHandler.PRG. Pass it the class and library for the handler, the event number, and optionally

the object type and code. It adds a record to the registry table (expected to be named

ReportBuilder.DBF; change the USE and INSERT INTO statements to use a different table

name) if it doesn’t exist, and disables any other handlers for the same event.

lparameters tcClass, ;

 tcLibrary, ;

 tnEventType, ;

 tnObjType, ;

 tnObjCode

local lcClass, ;

 lnObjType, ;

 lnObjCode

* Open the report builder table.

use ReportBuilder

* If the specified handler is already there, ensure it's enabled by

* setting EventType to the proper value. Otherwise, add a record for

* it, using defaults for the object type and code if they weren't

* passed.

lcClass = padr(upper(tcClass), len(Hndl_Class))

locate for upper(Hndl_Class) == lcClass

if found()

 replace EventType with tnEventType

else

 lnObjType = iif(vartype(tnObjType) = 'N', tnObjType, -1)

 lnObjCode = iif(vartype(tnObjCode) = 'N', tnObjCode, -1)

 insert into ReportBuilder ;

 (Rec_Type, ;

 Hndl_Class, ;

 Hndl_Lib, ;

 EventType, ;

 ObjType, ;

 ObjCode) ;

 values ;

 ('H', ;

 tcClass, ;

 tcLibrary, ;

 tnEventType, ;

 lnObjType, ;

 lnObjCode)

endif found()

* Disable any other handlers for the same event by setting their

* EventType code to an used value.

replace EventType with EventType + 100 ;

 for EventType = tnEventType and ;

 not upper(Hndl_Class) == lcClass

* Clean up and exit.

use

Report Templates

When you create a new report, you get a blank report. Wouldn’t it be nice if VFP would

automatically add certain common elements you want in every report? In other words, we’d like

to have a report that’s used as the template for all new reports.

Back in the FoxPro 2.6 days, we actually had this capability (although it was undocumented):

since FoxPro always created a new report with the name Untitled if you didn’t specify a name, if

you had a report called Untitled.FRX, VFP would open it, but prompt you for a new name when

you saved the new report for the first time. Unfortunately, this trick doesn’t work in VFP. First, if

you don’t specify a name, you get a default name of ReportN, where N is a number that

increments from 1 every time a report is created in a particular VFP session. Second, even if a

report named Report1.FRX exists and N will be 1 because this is the first time you’ve used

CREATE REPORT since starting VFP, VFP doesn’t open that report but gives you a blank

report.

Now, with design-time report events, we can have report templates. There isn’t an event that fires

when a report is created, but there is when one is opened, so we simply have to check if the

report is a new one or not (the utility method IsNewReport returns .T. if that’s the case). If it’s a

new report, we ZAP existing records in the FRX, APPEND FROM a template FRX file, and set

the return flag to indicate that the event was handled and the FRX was changed. Here’s the code

in the OnExecute method of SFNewReportHandlerBasic:

local lnSelect, ;

 lnRecno

if This.oUtilities.IsNewReport()

 lnSelect = select()

 select FRX

 zap

 lnRecno = recno()

 append from (This.cTemplateReport)

 This.oEvent.ReturnFlags = FRX_REPBLDR_HANDLE_EVENT + ;

 FRX_REPBLDR_RELOAD_CHANGES

 go lnRecno

 select (lnSelect)

endif This.oUtilities.IsNewReport()

The custom property cTemplateReport contains the name of the template FRX to use. By default,

it contains Template.FRX. To register this class, run InstallNewReportHandlerBasic.PRG.

Let’s get even fancier: how about asking the user which template they’d like to use?

SFNewReportHandlerFancy is a subclass of SFNewReportHandlerBasic with the following code

in OnExecute:

local loForm

if This.oUtilities.IsNewReport()

 loForm = newobject('SFSelectTemplateForm', 'SFReportBuilder.vcx')

 loForm.Show()

 if vartype(loForm) = 'O'

 This.cTemplateReport = loForm.cTemplate

 endif vartype(loForm) = 'O'

endif This.oUtilities.IsNewReport()

return dodefault()

This code uses the SFSelectTemplateForm class to display a list of available templates. This list

comes from Templates.DBF, which has fields containing the name of the template FRX, a

descriptive name for the template, and a memo containing comments about the template. To

register this class, run InstallNewReportHandlerFancy.PRG.

Custom Dialog for New Fields

One of the things I’ve always wanted to do was replace the dialog that appears when a user adds

a new field to a report. I want a dialog that is both simpler (it displays descriptive names for

tables and fields) and more powerful (it doesn’t require the tables to be in the DataEnvironment

or open and it has options for adding a label to go along with the field). Since I can now take over

the “new field” report event, I can finally create the dialog I want.

SFNewTextBoxHandler is registered as the handler for new fields with this line of code (taken

from TestNewField.PRG):

do InstallHandler with 'SFNewTextBoxHandler', 'SFReportBuilder.vcx', 2, 8, 0

TestNewField.PRG also creates a meta data object that has collections of tables and fields read

from a meta data table. We won’t look at that object here; feel free to examine it yourself.

When you run TestNewField.PRG, it automatically creates a new report, but nothing else appears

different. However, since SFNewTextBoxHandler is now the handler for new fields, when you

add a field, you’ll get the dialog shown below rather than the usual one.

This dialog displays descriptive names for the tables and fields in the SQL Server Northwind

database, which, of course, aren’t in the DataEnvironment or open in VFP (they don’t need to be

since this information comes from meta data). It also allows you to indicate whether a label is

created or not, and if so, whether it should be placed in the page header band above the field or in

the detail band to the left of the field.

As with other subclasses of SFReportEventHandler, it’s the OnExecute method of

SFNewTextBoxHandler that does the work. We won’t go over all the code in this method, just

the more interesting stuff. The first thing this method does is display the dialog shown above.

Then, if the user clicks on OK, it retrieves some information about the selected field from the

meta data (the data type, size, etc.). It then uses the SFReportEventUtilities object to retrieve the

default font, size, and style from the header record in the FRX. Then, it uses the FRXCursor

helper object to determine the height and width of the field in FRUs, and updates the field’s

record in the FRX accordingly.

lcFontName = .oUtilities.GetReportHeaderValue('FONTFACE')

lnFontSize = .oUtilities.GetReportHeaderValue('FONTSIZE')

lnFontStyle = .oUtilities.GetReportHeaderValue('FONTSTYLE')

lcFontStyle = .oUtilities.GetFontStyle(lnFontStyle)

* Determine the width and height for the textbox.

lnWidth = .oEvent.FRXCursor.GetFRUTextWidth(lcText, lcFontName, ;

 lnFontSize, lcFontStyle)

lnHeight = .oEvent.FRXCursor.GetFRUTextHeight(lcText, lcFontName, ;

 lnFontSize, lcFontStyle)

* Update the properties of the new textbox.

replace EXPR with lcField, ;

 NAME with lcName, ;

 WIDTH with lnWidth, ;

 HEIGHT with lnHeight ;

 PICTURE with iif(empty(lcPicture), '', '"' + lcPicture + '"'), ;

 FILLCHAR with lcType, ;

 FONTFACE with lcFontName, ;

 FONTSIZE with lnFontSize, ;

 FONTSTYLE with lnFontStyle, ;

 USER with 'EXPR=' + lcExpr + chr(13) + chr(10) ;

 in FRX

The next thing it does is determine where to put the label object for the field. If it’s supposed to

go in the page header, the SFReportEventUtilities object is asked to find a label in the page

header band that has “*:TEMPLATE” in its USER memo. If such an object exists, it’s used as

the template for the new label (font, style, vertical position, etc.). If “REMOVE” also appears,

the template object is removed from the report.

if lnPosition = 1

 loBand = .oUtilities.GetBandObject(FRX_OBJCOD_PAGEHEADER)

 loTemplate = .oUtilities.FindTemplateObject(loBand, ;

 FRX_OBJTYP_LABEL, '*:TEMPLATE', .T.)

 if vartype(loTemplate) = 'O'

 if '*:TEMPLATE REMOVE' $ upper(loTemplate.User)

 .oUtilities.RemoveReportObject(loTemplate.UniqueID)

 loTemplate.User = strtran(loTemplate.User, ;

 '*:TEMPLATE REMOVE', '*:TEMPLATE')

 endif '*:TEMPLATE REMOVE' $ upper(loTemplate.User)

 loObject = loTemplate

 lnVPos = loObject.VPos

 else

 lnVPos = loBand.Stop - lnHeight - BAND_SEPARATOR_HEIGHT_FRUS

 endif vartype(loTemplate) = 'O'

If the label is supposed to go in the same band as the field, the SFReportEventUtilities object is

asked to find a band in the report, then like the previous code, to look in that band for a label

with “*:TEMPLATE” in its USER memo and use it as the template.

else

 loBand = .oEvent.FRXCursor.GetBandFor(FRX.UniqueID)

 loTemplate = .oUtilities.FindTemplateObject(loBand, ;

 FRX_OBJTYP_LABEL, '*:TEMPLATE', .T.)

 if vartype(loTemplate) = 'O'

 if '*:TEMPLATE REMOVE' $ upper(loTemplate.User)

 .oUtilities.RemoveReportObject(loTemplate.UniqueID)

 loTemplate.User = strtran(loTemplate.User, ;

 '*:TEMPLATE REMOVE', '*:TEMPLATE')

 endif '*:TEMPLATE REMOVE' $ upper(loTemplate.User)

 loObject = loTemplate

 endif vartype(loTemplate) = 'O'

endif lnPosition = 1

Finally, a new label is added to the report.

with loObject

 .UniqueID = sys(2015)

 .TimeStamp = This.oEvent.FRXCursor.GetFRXTimeStamp(datetime())

 .Name = ''

 .Expr = '"' + lcCaption + '"'

 .Height = lnHeight

 .Width = lnWidth

 .VPos = lnVPos

 .HPos = lnHPos

 .ObjType = FRX_OBJTYP_LABEL

endwith

insert into FRX from name loObject

This is the most complicated event handler we’ve seen, because it has to deal with more things in

the FRX. Doing this type of work requires a fair bit of knowledge about the structure of an FRX,

so be sure to check out the 90FRX report in the Tools\FileSpec subdirectory of the VFP home

directory for documentation on the FRX.

By the way, this sample shows another cool new feature in VFP 9: design-time labels. Notice that

when you add a field to the report, it displays the caption rather than the field name in the field

object. That’s because the code above fills in the NAME column of the field object in the FRX

with the caption for the field. When you use CREATE or MODIFY REPORT with the

PROTECTED keyword, the Report Designer will display the contents of the NAME column

rather than the EXPR column for field objects. This means you can display nice descriptive

names for fields rather than the actual field names. Of course, they’ll see the actual field names in

the Properties dialog, but at least they’ll see the nice names on the design surface.

Generating Cursors on the Fly

Since we can now create a report from meta data using the SFNewTextBoxHandler handler, what

happens when we try to preview the report? It won’t work, because the cursors haven’t been

opened. Ah, but what if we hooked into the preview event and generated the cursors before the

report is run?

SFPreviewHandler gets registered as the handler for events 10 (previewing) and 18 (printing) by

InstallPreview.PRG. It’s OnExecute method is fairly simple: it generates a SQL SELECT

statement by looking at the fields in the report (we won’t look at the code for the

CreateSQLStatement method here), instantiates an object that opens a connection to the SQL

Server Northwind database, sends the SQL SELECT statement to SQL Server to create a cursor,

and tells the report engine to cancel the preview or print if we failed for some reason.

local lcSelect, ;

 loConnection, ;

 llOK

* Create the SQL SELECT statement we need for the report.

wait window 'Retrieving data...' nowait

lcSelect = This.CreateSQLStatement()

* Create a connection object and try to connect to the SQL Server Northwind

* database. If we succeeded, execute the SQL SELECT statement in the report's

* datasession.

loConnection = newobject('SFConnectionMgr', 'SFConnection.vcx')

loConnection.cConnectString = 'driver=SQL Server;server=(local);' + ;

 'database=Northwind;trusted_connection=yes'

if loConnection.Connect()

 llOK = loConnection.ExecuteStatement(lcSelect, ;

 This.oEvent.DefaultSessionID, sys(2015))

endif loConnection.Connect()

* If we failed to connect or create the cursor, display a warning and flag

* that we've handled the event so the preview stops.

wait clear

if not llOK

 messagebox(loConnection.cErrorMessage)

 This.oEvent.ReturnFlags = FRX_REPBLDR_HANDLE_EVENT

endif not llOK

Summary

The VFP team certainly met their goals in the improvements they made to the reporting system.

The dialogs available in ReportBuilder.APP are more attractive, easier to use, and more capable

than those in earlier versions. The ability to hook into design-time report events means you can

create customized report designers that are more powerful, flexible, and easier to use, both for

your development team and your end users.

Note: since this document was written during the beta of VFP 9, many of the details described in

this document may be different in the release version. Be sure to check my Web site

(www.stonefield.com) for updates to this document and the accompanying samples.

Biography

Doug Hennig is a partner with Stonefield Systems Group Inc. and Stonefield Software Inc. He is

the author of the award-winning Stonefield Database Toolkit (SDT), the award-winning

Stonefield Query, and the MemberData Editor, Anchor Editor, and CursorAdapter and

DataEnvironment builders that come with Microsoft Visual FoxPro. Doug is co-author of

“What’s New in Visual FoxPro 8.0”, “The Hacker’s Guide to Visual FoxPro 7.0”, and “What’s

New in Visual FoxPro 7.0”. He was the technical editor of “The Hacker’s Guide to Visual

FoxPro 6.0” and “The Fundamentals”. All of these books are from Hentzenwerke Publishing

(http://www.hentzenwerke.com). Doug writes the monthly “Reusable Tools” column in FoxTalk.

He has spoken at every Microsoft FoxPro Developers Conference (DevCon) since 1997 and at

user groups and developer conferences all over North America. He has been a Microsoft Most

Valuable Professional (MVP) since 1996.

http://www.stonefield.com/
http://www.hentzenwerke.com/

Copyright © 2004 Doug Hennig. All Rights Reserved

